Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(root(3)(2))/(root(3)(-128))=

Evaluate.\newline231283= \frac{\sqrt[3]{2}}{\sqrt[3]{-128}}=

Full solution

Q. Evaluate.\newline231283= \frac{\sqrt[3]{2}}{\sqrt[3]{-128}}=
  1. Understand the problem: Understand the problem.\newlineWe need to find the value of the cube root of 22 divided by the cube root of 128-128.
  2. Apply cube root: Apply the cube root to both the numerator and the denominator.231283=21283\frac{\sqrt[3]{2}}{\sqrt[3]{-128}} = \sqrt[3]{\frac{2}{-128}}
  3. Simplify fraction: Simplify the fraction inside the cube root. \newline2128\frac{2}{-128} can be simplified to 164-\frac{1}{64} because 22 divided by 128128 is 164\frac{1}{64} and we keep the negative sign.\newline21283=1643\sqrt[3]{\frac{2}{-128}} = \sqrt[3]{-\frac{1}{64}}
  4. Evaluate cube root: Evaluate the cube root of 164-\frac{1}{64}. The cube root of 1-1 is 1-1 because (1)×(1)×(1)=1(-1) \times (-1) \times (-1) = -1. The cube root of 6464 is 44 because 4×4×4=644 \times 4 \times 4 = 64. Therefore, 1643=14\sqrt[3]{-\frac{1}{64}} = -\frac{1}{4}.

More problems from Solve advanced linear inequalities