Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following algebraic fraction:


(2x^(2)-3x-5)/(x^(2)+6x+5)

Simplify the following algebraic fraction:\newline2x23x5x2+6x+5\frac{2x^{2}-3x-5}{x^{2}+6x+5}

Full solution

Q. Simplify the following algebraic fraction:\newline2x23x5x2+6x+5\frac{2x^{2}-3x-5}{x^{2}+6x+5}
  1. Factorize Numerator and Denominator: Factorize the numerator and denominator of the fraction.\newlineNumerator: 2x23x52x^2 - 3x - 5. We look for two numbers that multiply to 2×5=102 \times -5 = -10 and add to 3-3. These numbers are 5-5 and 22.\newlineSo, 2x23x5=(2x+1)(x5)2x^2 - 3x - 5 = (2x + 1)(x - 5).\newlineDenominator: x2+6x+5x^2 + 6x + 5. We look for two numbers that multiply to 1×5=51 \times 5 = 5 and add to 66. These numbers are 11 and 55.\newlineSo, x2+6x+5=(x+1)(x+5)x^2 + 6x + 5 = (x + 1)(x + 5).
  2. Simplify by Canceling Common Factors: Simplify the fraction by canceling common factors.\newline(2x+1)(x5)(x+1)(x+5) \frac{(2x + 1)(x - 5)}{(x + 1)(x + 5)} \newlineWe can cancel the (x+5)(x + 5) terms in the numerator and denominator.
  3. Write Simplified Expression: Write the simplified expression.\newline2x+1x+1 \frac{2x + 1}{x + 1} \newlineThis is the simplified form of the given algebraic fraction.

More problems from Evaluate definite integrals using the chain rule