Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

of 
int_(0)^(ln 3)(e^(-x))/(1+e^(-x))dx

Evaluate the limit: 0ln3ex1+ex dx \int_{0}^{\ln 3} \frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} \mathrm{~d} x

Full solution

Q. Evaluate the limit: 0ln3ex1+ex dx \int_{0}^{\ln 3} \frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} \mathrm{~d} x
  1. Substitution and Simplification: Simplify the integrand by using a substitution. Let u=1+exu = 1 + e^{-x}, which implies that du=exdxdu = -e^{-x}dx. We need to express dxdx in terms of dudu.
  2. Calculate dxdx: Calculate dxdx from the substitution.du=exdxdu = -e^{-x}dx implies dx=duexdx = -\frac{du}{e^{-x}}. Now we can substitute this into the integral.
  3. Change Limits of Integration: Change the limits of integration according to the substitution.\newlineWhen x=0x = 0, u=1+e0=2u = 1 + e^0 = 2.\newlineWhen x=ln(3)x = \ln(3), u=1+eln(3)=1+13=43u = 1 + e^{-\ln(3)} = 1 + \frac{1}{3} = \frac{4}{3}.
  4. Rewrite Integral with New Variable: Rewrite the integral with the new variable and limits.\newlineThe integral becomes 243(duu)\int_{2}^{\frac{4}{3}}\left(-\frac{du}{u}\right). The negative sign comes from the dxdx substitution.
  5. Evaluate Integral: Evaluate the integral with the new variable.\newlineThe integral of 1udu-\frac{1}{u} \, du is lnu-\ln|u|. So we have lnu-\ln|u| evaluated from 22 to 43\frac{4}{3}.
  6. Apply Fundamental Theorem of Calculus: Apply the Fundamental Theorem of Calculus. We need to calculate lnu-\ln|u| from 22 to 43\frac{4}{3}, which is ln(43)+ln(2)-\ln(\frac{4}{3}) + \ln(2).
  7. Simplify Result: Simplify the result. ln(43)+ln(2)=ln(2)ln(43)=ln(2)ln(4)+ln(3)=ln(24)+ln(3)=ln(12)+ln(3)=ln(32)-\ln(\frac{4}{3}) + \ln(2) = \ln(2) - \ln(\frac{4}{3}) = \ln(2) - \ln(4) + \ln(3) = \ln(\frac{2}{4}) + \ln(3) = \ln(\frac{1}{2}) + \ln(3) = \ln(\frac{3}{2}).
  8. Check for Errors: Check for any mathematical errors in the previous steps.\newlineNo mathematical errors were made in the previous steps.

More problems from Evaluate definite integrals using the chain rule