Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(4))(sin(2x)-1)/(sin^(2)(2x)-1)

limxπ4sin(2x)1sin2(2x)1 \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin (2 x)-1}{\sin ^{2}(2 x)-1}

Full solution

Q. limxπ4sin(2x)1sin2(2x)1 \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin (2 x)-1}{\sin ^{2}(2 x)-1}
  1. Simplify Expression: We are asked to find the limit of the function (sin(2x)1)/(sin2(2x)1)(\sin(2x) - 1) / (\sin^2(2x) - 1) as xx approaches π/4\pi/4. Let's first simplify the expression if possible before substituting the value of xx.
  2. Factorize Difference of Squares: Notice that sin2(2x)1\sin^2(2x) - 1 is a difference of squares which can be factored as (sin(2x)1)(sin(2x)+1)(\sin(2x) - 1)(\sin(2x) + 1).
  3. Cancel Common Terms: Now we can rewrite the original expression by canceling out the common terms in the numerator and the denominator: \newline(sin(2x)1)/(sin2(2x)1)=(sin(2x)1)/((sin(2x)1)(sin(2x)+1))=1/(sin(2x)+1)(\sin(2x) - 1) / (\sin^{2}(2x) - 1) = (\sin(2x) - 1) / ((\sin(2x) - 1)(\sin(2x) + 1)) = 1 / (\sin(2x) + 1)
  4. Substitute x Value: Next, we substitute x=π4x = \frac{\pi}{4} into the simplified expression:\newlinelimxπ41sin(2x)+1=1sin(2π4)+1=1sin(π2)+1\lim_{x \to \frac{\pi}{4}} \frac{1}{\sin(2x) + 1} = \frac{1}{\sin(2 \cdot \frac{\pi}{4}) + 1} = \frac{1}{\sin(\frac{\pi}{2}) + 1}
  5. Evaluate Limit: Since sin(π2)\sin(\frac{\pi}{2}) is equal to 11, we have: 1(sin(π2)+1)=1(1+1)=12\frac{1}{(\sin(\frac{\pi}{2}) + 1)} = \frac{1}{(1 + 1)} = \frac{1}{2}
  6. Final Result: Therefore, the limit of the function as xx approaches π/4\pi/4 is 1/21/2.

More problems from Evaluate definite integrals using the chain rule