Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(3))sin(x)=?
Choose 1 answer:
(A) 
(1)/(2)
(B) 
(sqrt3)/(2)
(c) 
sqrt3
(D) The limit doesn't exist.

limxπ3sin(x)=? \lim _{x \rightarrow \frac{\pi}{3}} \sin (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 32 \frac{\sqrt{3}}{2} \newline(C) 3 \sqrt{3} \newline(D) The limit doesn't exist.

Full solution

Q. limxπ3sin(x)=? \lim _{x \rightarrow \frac{\pi}{3}} \sin (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 32 \frac{\sqrt{3}}{2} \newline(C) 3 \sqrt{3} \newline(D) The limit doesn't exist.
  1. Substitute xx with π3\frac{\pi}{3}: To find the limit of sin(x)\sin(x) as xx approaches π3\frac{\pi}{3}, we can directly substitute xx with π3\frac{\pi}{3} in the function sin(x)\sin(x), since the sine function is continuous everywhere.
  2. Calculate sin(π3)\sin(\frac{\pi}{3}): Substituting xx with π3\frac{\pi}{3} in sin(x)\sin(x), we get sin(π3)\sin(\frac{\pi}{3}).
  3. Use trigonometry: The exact value of sin(π3)\sin(\frac{\pi}{3}) is known from trigonometry to be 32\frac{\sqrt{3}}{2}.
  4. Determine the limit: Therefore, the limit of sin(x)\sin(x) as xx approaches π3\frac{\pi}{3} is 32\frac{\sqrt{3}}{2}.

More problems from Is (x, y) a solution to the system of equations?