Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
- Let
g
g
g
be a function such that
g
(
4
)
=
8
g(4)=8
g
(
4
)
=
8
and
g
′
(
4
)
=
−
3
g^{\prime}(4)=-3
g
′
(
4
)
=
−
3
.
\newline
- Let
h
h
h
be the function
h
(
x
)
=
x
h(x)=\sqrt{x}
h
(
x
)
=
x
.
\newline
Let
H
H
H
be a function defined as
H
(
x
)
=
g
(
x
)
⋅
h
(
x
)
H(x)=g(x) \cdot h(x)
H
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
\newline
H
′
(
4
)
=
H^{\prime}(4)=
H
′
(
4
)
=
View step-by-step help
Home
Math Problems
Algebra 2
Transformations of absolute value functions
Full solution
Q.
- Let
g
g
g
be a function such that
g
(
4
)
=
8
g(4)=8
g
(
4
)
=
8
and
g
′
(
4
)
=
−
3
g^{\prime}(4)=-3
g
′
(
4
)
=
−
3
.
\newline
- Let
h
h
h
be the function
h
(
x
)
=
x
h(x)=\sqrt{x}
h
(
x
)
=
x
.
\newline
Let
H
H
H
be a function defined as
H
(
x
)
=
g
(
x
)
⋅
h
(
x
)
H(x)=g(x) \cdot h(x)
H
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
\newline
H
′
(
4
)
=
H^{\prime}(4)=
H
′
(
4
)
=
Product Rule Derivative:
To find
H
′
(
4
)
H'(4)
H
′
(
4
)
, we need to use the product rule for derivatives, which states that
(
f
g
)
′
=
f
′
g
+
f
g
′
(fg)' = f'g + fg'
(
f
g
)
′
=
f
′
g
+
f
g
′
.
Find
h
(
4
)
h(4)
h
(
4
)
:
We know
g
(
4
)
=
8
g(4)=8
g
(
4
)
=
8
and
g
′
(
4
)
=
−
3
g'(4)=-3
g
′
(
4
)
=
−
3
. We need to find
h
(
4
)
h(4)
h
(
4
)
and
h
′
(
4
)
h'(4)
h
′
(
4
)
.
Calculate
h
(
4
)
h(4)
h
(
4
)
:
Calculate
h
(
4
)
h(4)
h
(
4
)
by substituting
x
x
x
with
4
4
4
in
h
(
x
)
=
x
h(x)=\sqrt{x}
h
(
x
)
=
x
. So,
h
(
4
)
=
4
=
2
h(4)=\sqrt{4}=2
h
(
4
)
=
4
=
2
.
Find
h
′
(
x
)
h'(x)
h
′
(
x
)
:
To find
h
′
(
x
)
h'(x)
h
′
(
x
)
, we differentiate
h
(
x
)
=
x
h(x)=\sqrt{x}
h
(
x
)
=
x
. The derivative of
x
\sqrt{x}
x
is
1
2
x
\frac{1}{2\sqrt{x}}
2
x
1
.
Calculate
h
′
(
4
)
h'(4)
h
′
(
4
)
:
Now calculate
h
′
(
4
)
h'(4)
h
′
(
4
)
by substituting
x
x
x
with
4
4
4
in
h
′
(
x
)
=
1
2
x
h'(x)=\frac{1}{2\sqrt{x}}
h
′
(
x
)
=
2
x
1
. So,
h
′
(
4
)
=
1
2
4
=
1
4
h'(4)=\frac{1}{2\sqrt{4}}=\frac{1}{4}
h
′
(
4
)
=
2
4
1
=
4
1
.
Apply Product Rule:
Apply the product rule:
H
′
(
x
)
=
g
′
(
x
)
h
(
x
)
+
g
(
x
)
h
′
(
x
)
H'(x) = g'(x)h(x) + g(x)h'(x)
H
′
(
x
)
=
g
′
(
x
)
h
(
x
)
+
g
(
x
)
h
′
(
x
)
.
Substitute Values:
Substitute the known values into the product rule to find
H
′
(
4
)
H'(4)
H
′
(
4
)
:
H
′
(
4
)
=
g
′
(
4
)
h
(
4
)
+
g
(
4
)
h
′
(
4
)
H'(4) = g'(4)h(4) + g(4)h'(4)
H
′
(
4
)
=
g
′
(
4
)
h
(
4
)
+
g
(
4
)
h
′
(
4
)
.
Calculate
H
′
(
4
)
H'(4)
H
′
(
4
)
:
H
′
(
4
)
=
(
−
3
)
(
2
)
+
(
8
)
(
1
4
)
H'(4) = (-3)(2) + (8)(\frac{1}{4})
H
′
(
4
)
=
(
−
3
)
(
2
)
+
(
8
)
(
4
1
)
.
Final Calculation:
Calculate
H
′
(
4
)
H'(4)
H
′
(
4
)
:
H
′
(
4
)
=
−
6
+
2
H'(4) = -6 + 2
H
′
(
4
)
=
−
6
+
2
.
More problems from Transformations of absolute value functions
Question
We want to factor the following expression:
\newline
x
4
+
9
x^{4}+9
x
4
+
9
\newline
Which pattern can we use to factor the expression?
\newline
U
U
U
and
V
V
V
are either constant integers or single-variable expressions.
\newline
Choose
1
1
1
answer:
\newline
(A)
(
U
+
V
)
2
(U+V)^{2}
(
U
+
V
)
2
or
(
U
−
V
)
2
(U-V)^{2}
(
U
−
V
)
2
\newline
(B)
(
U
+
V
)
(
U
−
V
)
(U+V)(U-V)
(
U
+
V
)
(
U
−
V
)
\newline
(C) We can't use any of the patterns.
Get tutor help
Posted 10 months ago
Question
z
=
−
19
+
3.14
i
z=-19+3.14 i
z
=
−
19
+
3.14
i
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
\begin{array}{l} \operatorname{Re}(z)=-19 \text { and } \\ \operatorname{Im}(z)=3.14 \end{array}
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
\newline
(B)
\newline
Re
(
z
)
=
3.14
i
and
Im
(
z
)
=
−
19
\begin{array}{l} \operatorname{Re}(z)=3.14 i \text { and } \\ \operatorname{Im}(z)=-19 \end{array}
Re
(
z
)
=
3.14
i
and
Im
(
z
)
=
−
19
\newline
(c)
\newline
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
i
\begin{array}{l} \operatorname{Re}(z)=-19 \text { and } \\ \operatorname{Im}(z)=3.14 i \end{array}
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
i
\newline
(D)
\newline
Re
(
z
)
=
3.14
and
Im
(
z
)
=
−
19
\begin{array}{l} \operatorname{Re}(z)=3.14 \text { and } \\ \operatorname{Im}(z)=-19 \end{array}
Re
(
z
)
=
3.14
and
Im
(
z
)
=
−
19
Get tutor help
Posted 10 months ago
Question
z
=
−
60
−
12
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=-60-12 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
−
60
−
12
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
−
45
i
−
15.5
z=-45 i-15.5
z
=
−
45
i
−
15.5
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
−
45
and
Im
(
z
)
=
−
15.5
\begin{array}{l} \operatorname{Re}(z)=-45 \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array}
Re
(
z
)
=
−
45
and
Im
(
z
)
=
−
15.5
\newline
(B)
\newline
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
\begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 \end{array}
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
\newline
(C)
\newline
Re
(
z
)
=
−
45
i
and
Im
(
z
)
=
−
15.5
\begin{array}{l} \operatorname{Re}(z)=-45 i \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array}
Re
(
z
)
=
−
45
i
and
Im
(
z
)
=
−
15.5
\newline
(D)
\newline
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
i
\begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 i \end{array}
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
i
Get tutor help
Posted 10 months ago
Question
z
=
−
12
i
+
11
z=-12 i+11
z
=
−
12
i
+
11
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
\begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 \end{array}
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
\newline
(B)
\newline
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
i
\begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 i \end{array}
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
i
\newline
(C)
\newline
Re
(
z
)
=
−
12
i
and
Im
(
z
)
=
11
\begin{array}{l} \operatorname{Re}(z)=-12 i \text { and } \\ \operatorname{Im}(z)=11 \end{array}
Re
(
z
)
=
−
12
i
and
Im
(
z
)
=
11
\newline
(D)
\newline
Re
(
z
)
=
−
12
and
Im
(
z
)
=
11
\begin{array}{l} \operatorname{Re}(z)=-12 \text { and } \\ \operatorname{Im}(z)=11 \end{array}
Re
(
z
)
=
−
12
and
Im
(
z
)
=
11
Get tutor help
Posted 10 months ago
Question
(
18
+
4
i
)
+
(
−
11
+
23
i
)
=
(18+4 i)+(-11+23 i)=
(
18
+
4
i
)
+
(
−
11
+
23
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
14
+
60
i
)
+
(
−
30
+
2
i
)
=
(14+60 i)+(-30+2 i)=
(
14
+
60
i
)
+
(
−
30
+
2
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
3
−
91
i
)
+
(
67
)
=
(3-91 i)+(67)=
(
3
−
91
i
)
+
(
67
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
−
71
+
2
i
)
+
(
88
−
12
i
)
=
(-71+2 i)+(88-12 i)=
(
−
71
+
2
i
)
+
(
88
−
12
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
−
33
−
2
i
)
−
(
50
+
9
i
)
=
(-33-2 i)-(50+9 i)=
(
−
33
−
2
i
)
−
(
50
+
9
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant