Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(4)=8 and 
g^(')(4)=-3.
Let 
h be the function 
h(x)=sqrtx.

Let 
H be a function defined as 
H(x)=g(x)*h(x).

H^(')(4)=

- Let g g be a function such that g(4)=8 g(4)=8 and g(4)=3 g^{\prime}(4)=-3 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet H H be a function defined as H(x)=g(x)h(x) H(x)=g(x) \cdot h(x) .\newlineH(4)= H^{\prime}(4)=

Full solution

Q. - Let g g be a function such that g(4)=8 g(4)=8 and g(4)=3 g^{\prime}(4)=-3 .\newline- Let h h be the function h(x)=x h(x)=\sqrt{x} .\newlineLet H H be a function defined as H(x)=g(x)h(x) H(x)=g(x) \cdot h(x) .\newlineH(4)= H^{\prime}(4)=
  1. Product Rule Derivative: To find H(4)H'(4), we need to use the product rule for derivatives, which states that (fg)=fg+fg(fg)' = f'g + fg'.
  2. Find h(4)h(4): We know g(4)=8g(4)=8 and g(4)=3g'(4)=-3. We need to find h(4)h(4) and h(4)h'(4).
  3. Calculate h(4)h(4): Calculate h(4)h(4) by substituting xx with 44 in h(x)=xh(x)=\sqrt{x}. So, h(4)=4=2h(4)=\sqrt{4}=2.
  4. Find h(x)h'(x): To find h(x)h'(x), we differentiate h(x)=xh(x)=\sqrt{x}. The derivative of x\sqrt{x} is 12x\frac{1}{2\sqrt{x}}.
  5. Calculate h(4)h'(4): Now calculate h(4)h'(4) by substituting xx with 44 in h(x)=12xh'(x)=\frac{1}{2\sqrt{x}}. So, h(4)=124=14h'(4)=\frac{1}{2\sqrt{4}}=\frac{1}{4}.
  6. Apply Product Rule: Apply the product rule: H(x)=g(x)h(x)+g(x)h(x)H'(x) = g'(x)h(x) + g(x)h'(x).
  7. Substitute Values: Substitute the known values into the product rule to find H(4)H'(4): H(4)=g(4)h(4)+g(4)h(4)H'(4) = g'(4)h(4) + g(4)h'(4).
  8. Calculate H(4)H'(4): H(4)=(3)(2)+(8)(14)H'(4) = (-3)(2) + (8)(\frac{1}{4}).
  9. Final Calculation: Calculate H(4)H'(4): H(4)=6+2H'(4) = -6 + 2.

More problems from Transformations of absolute value functions