Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=x^(-1).

f^(')(x)=

Let f(x)=x1 f(x)=x^{-1} .\newlinef(x)= f^{\prime}(x)=

Full solution

Q. Let f(x)=x1 f(x)=x^{-1} .\newlinef(x)= f^{\prime}(x)=
  1. Identify Function: Identify the function to differentiate.\newlineWe are given the function f(x)=x1f(x) = x^{-1}, which is a power function.
  2. Apply Power Rule: Apply the power rule for differentiation. The power rule states that if f(x)=xnf(x) = x^n, then f(x)=nx(n1)f^{\prime}(x) = n \cdot x^{(n-1)}. Here, n=1n = -1.
  3. Differentiate Function: Differentiate the function using the power rule.\newlinef(x)=(1)×x(11)f'(x) = (-1) \times x^{(-1 - 1)}\newlinef(x)=(1)×x2f'(x) = (-1) \times x^{-2}
  4. Simplify Expression: Simplify the expression.\newlinef(x)=x2f^{\prime}(x) = -x^{-2}\newlineThis is the derivative of the function f(x)=x1f(x) = x^{-1}.

More problems from Operations with rational exponents