Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=lim_(n rarr oo)((n^(n)(x+n)(x+(n)/(2))cdots(x+(n)/(n)))/(n!(x^(2)+n^(2))(x^(2)+(n^(2))/(4))cdots(x^(2)+(n^(2))/(n^(2)))))^((x)/(n)), for all 
x > 0. Then
(A) 
f((1)/(2)) >= f(1)
(B) 
f((1)/(3)) <= f((2)/(3))
(C) 
f^(')(2) <= 0
(D) 
(f^(')(3))/(f(3)) >= (f^(')(2))/(f(2))

Let \newlinef(x)=limn(nn(x+n)(x+n2)(x+nn)n!(x2+n2)(x2+n24)(x2+n2n2))xn,f(x)=\lim_{n \to \infty}\left(\frac{n^{n}(x+n)(x+\frac{n}{2})\cdots(x+\frac{n}{n})}{n!(x^{2}+n^{2})(x^{2}+\frac{n^{2}}{4})\cdots(x^{2}+\frac{n^{2}}{n^{2}})}\right)^{\frac{x}{n}}, for all \newlinex > 0. Then\newline(A) \newlinef(12)f(1)f\left(\frac{1}{2}\right) \geq f(1)\newline(B) \newlinef(13)f(23)f\left(\frac{1}{3}\right) \leq f\left(\frac{2}{3}\right)\newline(C) \newlinef(2)0f'(2) \leq 0\newline(D) \newlinef(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \geq \frac{f'(2)}{f(2)}

Full solution

Q. Let \newlinef(x)=limn(nn(x+n)(x+n2)(x+nn)n!(x2+n2)(x2+n24)(x2+n2n2))xn,f(x)=\lim_{n \to \infty}\left(\frac{n^{n}(x+n)(x+\frac{n}{2})\cdots(x+\frac{n}{n})}{n!(x^{2}+n^{2})(x^{2}+\frac{n^{2}}{4})\cdots(x^{2}+\frac{n^{2}}{n^{2}})}\right)^{\frac{x}{n}}, for all \newlinex>0.x > 0. Then\newline(A) \newlinef(12)f(1)f\left(\frac{1}{2}\right) \geq f(1)\newline(B) \newlinef(13)f(23)f\left(\frac{1}{3}\right) \leq f\left(\frac{2}{3}\right)\newline(C) \newlinef(2)0f'(2) \leq 0\newline(D) \newlinef(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \geq \frac{f'(2)}{f(2)}
  1. Analyze Function Structure: First, let's analyze the structure of the function f(x)f(x) given by the limit. We have a product of terms (x+n/k)(x + n/k) in the numerator and (x2+n2/k2)(x^2 + n^2/k^2) in the denominator, where kk ranges from 11 to nn. As nn approaches infinity, the terms n/kn/k and n2/k2n^2/k^2 will approach 00, simplifying the expression.
  2. Rewrite Function: The function f(x)f(x) can be rewritten as:\newlinef(x)=limn(nnxnn!x2n)xnf(x) = \lim_{n \to \infty} \left(\frac{n^n \cdot x^n}{n! \cdot x^{2n}}\right)^{\frac{x}{n}}\newlineThis is because each term (x+nk)(x + \frac{n}{k}) approaches xx, and each term (x2+n2k2)(x^2 + \frac{n^2}{k^2}) approaches x2x^2 as nn approaches infinity.
  3. Simplify Expression: We can simplify the expression further by canceling out the common xnx^n term in the numerator and denominator: f(x)=limn(nnn!xn)xnf(x) = \lim_{n \to \infty} \left(\frac{n^n}{n! \cdot x^n}\right)^{\frac{x}{n}}
  4. Approximate Limit: Using Stirling's approximation for n!n!, which is n!2πn(ne)nn! \approx \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n, we can approximate the limit as:\newlinef(x)=limn(nn2πn(ne)nxn)xnf(x) = \lim_{n \to \infty} \left(\frac{n^n}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot x^n}\right)^{\frac{x}{n}}
  5. Evaluate Limit: Simplifying the expression inside the limit, we get:\newlinef(x)=limn(en2πnxn)xnf(x) = \lim_{n \to \infty} \left(\frac{e^n}{\sqrt{2\pi n} \cdot x^n}\right)^{\frac{x}{n}}
  6. Evaluate Statements: Taking the limit as nn approaches infinity, we notice that the term (en)(x/n)(e^n)^{(x/n)} simplifies to exe^x, and the term (2πnxn)(x/n)(\sqrt{2\pi n} \cdot x^n)^{(x/n)} grows without bound for x > 0. Therefore, the limit of the entire expression as nn approaches infinity is 00 for all x > 0.
  7. Evaluate Statements: Taking the limit as nn approaches infinity, we notice that the term (en)(x/n)(e^n)^{(x/n)} simplifies to exe^x, and the term (2πnxn)(x/n)(\sqrt{2\pi n} \cdot x^n)^{(x/n)} grows without bound for x > 0. Therefore, the limit of the entire expression as nn approaches infinity is 00 for all x > 0.Since f(x)=0f(x) = 0 for all x > 0, we can now evaluate the truth of the statements (A), (B), (C), and (D).\newline(A) (en)(x/n)(e^n)^{(x/n)}00 is true because (en)(x/n)(e^n)^{(x/n)}11 and (en)(x/n)(e^n)^{(x/n)}22.\newline(B) (en)(x/n)(e^n)^{(x/n)}33 is true because (en)(x/n)(e^n)^{(x/n)}44 and (en)(x/n)(e^n)^{(x/n)}55.\newline(C) (en)(x/n)(e^n)^{(x/n)}66 is true because (en)(x/n)(e^n)^{(x/n)}77 is a constant function (f(x)=0f(x) = 0), so its derivative is 00.\newline(D) exe^x00 is true because both the numerator and denominator are 00, making the fractions undefined, but since (en)(x/n)(e^n)^{(x/n)}77 is constant, the statement is trivially true.

More problems from Evaluate definite integrals using the chain rule