Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=x^(3). If six subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 
int_(0)^(3)x^(3)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=x3 f(x)=x^{3} . If six subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 03x3dx \int_{0}^{3} x^{3} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=x3 f(x)=x^{3} . If six subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 03x3dx \int_{0}^{3} x^{3} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Determine Width of Subintervals: Determine the width of each subinterval. Since we are integrating from 00 to 33 and using six subintervals, the width (Δx)(\Delta x) of each subinterval is (30)/6=0.5(3 - 0) / 6 = 0.5.
  2. Calculate Midpoints: Calculate the midpoints of each subinterval.\newlineThe midpoints for the six subintervals are found by adding half of the width of a subinterval to the lower bound of each subinterval. The midpoints mim_i are: 0.250.25, 0.750.75, 1.251.25, 1.751.75, 2.252.25, and 2.752.75.
  3. Evaluate Function at Midpoints: Evaluate the function f(x)=x3f(x) = x^3 at each midpoint.\newlineWe calculate f(mi)f(m_i) for each midpoint:\newlinef(0.25)=0.253=0.015625f(0.25) = 0.25^3 = 0.015625\newlinef(0.75)=0.753=0.421875f(0.75) = 0.75^3 = 0.421875\newlinef(1.25)=1.253=1.953125f(1.25) = 1.25^3 = 1.953125\newlinef(1.75)=1.753=5.359375f(1.75) = 1.75^3 = 5.359375\newlinef(2.25)=2.253=11.390625f(2.25) = 2.25^3 = 11.390625\newlinef(2.75)=2.753=20.796875f(2.75) = 2.75^3 = 20.796875
  4. Multiply by Subinterval Width: Multiply each function value by the width of the subinterval.\newlineWe multiply each f(mi)f(m_i) by Δx\Delta x to get the area of the rectangle for each subinterval:\newlineA1=f(0.25)×Δx=0.015625×0.5=0.0078125A_1 = f(0.25) \times \Delta x = 0.015625 \times 0.5 = 0.0078125\newlineA2=f(0.75)×Δx=0.421875×0.5=0.2109375A_2 = f(0.75) \times \Delta x = 0.421875 \times 0.5 = 0.2109375\newlineA3=f(1.25)×Δx=1.953125×0.5=0.9765625A_3 = f(1.25) \times \Delta x = 1.953125 \times 0.5 = 0.9765625\newlineA4=f(1.75)×Δx=5.359375×0.5=2.6796875A_4 = f(1.75) \times \Delta x = 5.359375 \times 0.5 = 2.6796875\newlineA5=f(2.25)×Δx=11.390625×0.5=5.6953125A_5 = f(2.25) \times \Delta x = 11.390625 \times 0.5 = 5.6953125\newlineA6=f(2.75)×Δx=20.796875×0.5=10.3984375A_6 = f(2.75) \times \Delta x = 20.796875 \times 0.5 = 10.3984375
  5. Sum Rectangle Areas: Sum the areas of all rectangles to find the midpoint Riemann sum approximation.\newlineThe midpoint Riemann sum approximation is the sum of all the areas:\newlineR=A1+A2+A3+A4+A5+A6R = A_1 + A_2 + A_3 + A_4 + A_5 + A_6\newlineR=0.0078125+0.2109375+0.9765625+2.6796875+5.6953125+10.3984375R = 0.0078125 + 0.2109375 + 0.9765625 + 2.6796875 + 5.6953125 + 10.3984375\newlineR=19.96875R = 19.96875
  6. Round Result: Round the result to the nearest thousandth if necessary.\newlineR=19.96875R = 19.96875, which is already to the nearest thousandth.

More problems from Evaluate definite integrals using the power rule