Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=5^(x). If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 
int_(0)^(1.5)5^(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=5x f(x)=5^{x} . If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 01.55xdx \int_{0}^{1.5} 5^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=5x f(x)=5^{x} . If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 01.55xdx \int_{0}^{1.5} 5^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Divide into Subintervals: To approximate the integral using a right Riemann sum, we first need to divide the interval [0,1.5][0, 1.5] into six equal subintervals. This means each subinterval will have a length of (1.50)/6(1.5 - 0) / 6.
  2. Calculate Subinterval Length: Calculate the length of each subinterval: (1.50)/6=0.25(1.5 - 0) / 6 = 0.25.
  3. Identify Endpoints: Identify the endpoints of each subinterval. Since we are using a right Riemann sum, we will use the right endpoint of each subinterval to evaluate the function. The endpoints are: 0.250.25, 0.50.5, 0.750.75, 1.01.0, 1.251.25, and 1.51.5.
  4. Evaluate Function at Endpoints: Evaluate the function f(x)=5xf(x) = 5^x at each of the right endpoints of the subintervals: f(0.25)f(0.25), f(0.5)f(0.5), f(0.75)f(0.75), f(1.0)f(1.0), f(1.25)f(1.25), f(1.5)f(1.5).
  5. Calculate Function Values: Calculate the value of the function at each endpoint:\newlinef(0.25)=50.25f(0.25) = 5^{0.25},\newlinef(0.5)=50.5f(0.5) = 5^{0.5},\newlinef(0.75)=50.75f(0.75) = 5^{0.75},\newlinef(1.0)=51.0f(1.0) = 5^{1.0},\newlinef(1.25)=51.25f(1.25) = 5^{1.25},\newlinef(1.5)=51.5f(1.5) = 5^{1.5}.
  6. Calculate Rectangle Areas: Multiply each function value by the length of the subintervals 0.250.25 to get the area of each rectangle in the Riemann sum: \newlineArea1=0.25×50.25\text{Area}_1 = 0.25 \times 5^{0.25},\newlineArea2=0.25×50.5\text{Area}_2 = 0.25 \times 5^{0.5},\newlineArea3=0.25×50.75\text{Area}_3 = 0.25 \times 5^{0.75},\newlineArea4=0.25×51.0\text{Area}_4 = 0.25 \times 5^{1.0},\newlineArea5=0.25×51.25\text{Area}_5 = 0.25 \times 5^{1.25},\newlineArea6=0.25×51.5\text{Area}_6 = 0.25 \times 5^{1.5}.
  7. Add Rectangle Areas: Add up the areas of all rectangles to get the right Riemann sum approximation:\newlineRight Riemann Sum = Area1+Area2+Area3+Area4+Area5+Area6Area_1 + Area_2 + Area_3 + Area_4 + Area_5 + Area_6.
  8. Perform Calculations: Perform the calculations to find the sum: Right Riemann Sum = 0.25×50.25+0.25×50.5+0.25×50.75+0.25×51.0+0.25×51.25+0.25×51.50.25 \times 5^{0.25} + 0.25 \times 5^{0.5} + 0.25 \times 5^{0.75} + 0.25 \times 5^{1.0} + 0.25 \times 5^{1.25} + 0.25 \times 5^{1.5}.
  9. Use Calculator: Use a calculator to find the numerical values of each term and sum them up:\newlineRight Riemann Sum 0.25×2.378414+0.25×2.236068+0.25×3.343702+0.25×5+0.25×7.450580+0.25×11.180340\approx 0.25 \times 2.378414 + 0.25 \times 2.236068 + 0.25 \times 3.343702 + 0.25 \times 5 + 0.25 \times 7.450580 + 0.25 \times 11.180340.
  10. Calculate Numerical Values: Calculate the sum:\newlineRight Riemann Sum 0.25×2.378414+0.25×2.236068+0.25×3.343702+0.25×5+0.25×7.450580+0.25×11.1803400.5946035+0.559017+0.8359255+1.25+1.862645+2.7950857.897276\approx 0.25 \times 2.378414 + 0.25 \times 2.236068 + 0.25 \times 3.343702 + 0.25 \times 5 + 0.25 \times 7.450580 + 0.25 \times 11.180340 \approx 0.5946035 + 0.559017 + 0.8359255 + 1.25 + 1.862645 + 2.795085 \approx 7.897276.
  11. Calculate Sum: Round the result to the nearest thousandth: Right Riemann Sum 7.897\approx 7.897.

More problems from Evaluate definite integrals using the power rule