Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=(5)/(x). If five subintervals of equal length are used, what is the value of the right Riemann sum approximation for 
int_(2)^(3)(5)/(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=5x f(x)=\frac{5}{x} . If five subintervals of equal length are used, what is the value of the right Riemann sum approximation for 235xdx \int_{2}^{3} \frac{5}{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=5x f(x)=\frac{5}{x} . If five subintervals of equal length are used, what is the value of the right Riemann sum approximation for 235xdx \int_{2}^{3} \frac{5}{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Calculate Subinterval Width: We need to calculate the right Riemann sum for the function f(x)=5xf(x) = \frac{5}{x} from x=2x = 2 to x=3x = 3 using five equal subintervals. First, we find the width of each subinterval.\newlineThe total interval length is 32=13 - 2 = 1. With five subintervals, each subinterval has a width of 15\frac{1}{5}.
  2. Determine Right Endpoints: Next, we determine the xx-values at the right endpoints of each subinterval. Since we start at x=2x = 2 and each subinterval has a width of 15\frac{1}{5}, the right endpoints are x=2.2x = 2.2, x=2.4x = 2.4, x=2.6x = 2.6, x=2.8x = 2.8, and x=3x = 3.
  3. Evaluate Function at Endpoints: Now we evaluate the function f(x)=5xf(x) = \frac{5}{x} at each of these right endpoints. This gives us the heights of the rectangles for the Riemann sum.f(2.2)=52.2f(2.2) = \frac{5}{2.2}f(2.4)=52.4f(2.4) = \frac{5}{2.4}f(2.6)=52.6f(2.6) = \frac{5}{2.6}f(2.8)=52.8f(2.8) = \frac{5}{2.8}f(3)=53f(3) = \frac{5}{3}
  4. Calculate Rectangle Areas: We calculate the area of each rectangle by multiplying the height by the width (1/5)(1/5). The sum of these areas will give us the right Riemann sum approximation.\newlineArea=(15)×[f(2.2)+f(2.4)+f(2.6)+f(2.8)+f(3)]\text{Area} = \left(\frac{1}{5}\right) \times \left[f(2.2) + f(2.4) + f(2.6) + f(2.8) + f(3)\right]\newlineArea=(15)×[(52.2)+(52.4)+(52.6)+(52.8)+(53)]\text{Area} = \left(\frac{1}{5}\right) \times \left[\left(\frac{5}{2.2}\right) + \left(\frac{5}{2.4}\right) + \left(\frac{5}{2.6}\right) + \left(\frac{5}{2.8}\right) + \left(\frac{5}{3}\right)\right]
  5. Sum Up Areas: Perform the calculations for each term and sum them up.\newlineArea 15×[(52.2)+(52.4)+(52.6)+(52.8)+(53)]\approx \frac{1}{5} \times \left[\left(\frac{5}{2.2}\right) + \left(\frac{5}{2.4}\right) + \left(\frac{5}{2.6}\right) + \left(\frac{5}{2.8}\right) + \left(\frac{5}{3}\right)\right]\newlineArea 15×[2.273+2.083+1.923+1.786+1.667]\approx \frac{1}{5} \times \left[2.273 + 2.083 + 1.923 + 1.786 + 1.667\right]\newlineArea 15×9.732\approx \frac{1}{5} \times 9.732\newlineArea 1.9464\approx 1.9464

More problems from Evaluate definite integrals using the power rule