Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=3^(x). If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 
int_(0)^(3)3^(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=3x f(x)=3^{x} . If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 033xdx \int_{0}^{3} 3^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=3x f(x)=3^{x} . If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 033xdx \int_{0}^{3} 3^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Understand trapezoidal rule: Understand the trapezoidal rule and set up the problem.\newlineThe trapezoidal rule is a numerical method to approximate the definite integral of a function. It works by dividing the interval of integration into smaller subintervals, then approximating the area under the curve for each subinterval by the area of a trapezoid. The formula for the trapezoidal rule with nn subintervals is:\newlineT=(Δx/2)(f(x0)+2f(x1)+2f(x2)++2f(xn1)+f(xn))T = (\Delta x/2) \cdot (f(x_0) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n))\newlinewhere Δx\Delta x is the width of each subinterval, and x0,x1,,xnx_0, x_1, \ldots, x_n are the endpoints of the subintervals.\newlineIn this case, we are using three subintervals to approximate the integral from 00 to 33, so Δx=(30)/3=1\Delta x = (3 - 0)/3 = 1.
  2. Calculate function values: Calculate the function values at the endpoints of the subintervals.\newlineWe need to evaluate the function f(x)=3xf(x) = 3^x at the endpoints of the subintervals, which are x=0x = 0, x=1x = 1, x=2x = 2, and x=3x = 3.\newlinef(0)=30=1f(0) = 3^0 = 1\newlinef(1)=31=3f(1) = 3^1 = 3\newlinef(2)=32=9f(2) = 3^2 = 9\newlinef(3)=33=27f(3) = 3^3 = 27
  3. Apply trapezoidal rule: Apply the trapezoidal rule to approximate the integral.\newlineUsing the trapezoidal rule formula:\newlineT=(Δx/2)(f(0)+2f(1)+2f(2)+f(3))T = (\Delta x/2) \cdot (f(0) + 2f(1) + 2f(2) + f(3))\newlineT=(1/2)(1+23+29+27)T = (1/2) \cdot (1 + 2\cdot3 + 2\cdot9 + 27)\newlineT=(1/2)(1+6+18+27)T = (1/2) \cdot (1 + 6 + 18 + 27)\newlineT=(1/2)52T = (1/2) \cdot 52\newlineT=26T = 26
  4. Round result: Round the result to the nearest thousandth if necessary.\newlineSince the result is an integer, there is no need to round it. The value of the trapezoidal sum approximation is 2626.

More problems from Evaluate definite integrals using the power rule