Let f be the function defined by f(x)=2x. If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for ∫23.52xdx ? Round to the nearest thousandth if necessary.Answer:
Q. Let f be the function defined by f(x)=2x. If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for ∫23.52xdx ? Round to the nearest thousandth if necessary.Answer:
Determine subinterval width: Determine the width of each subinterval.The interval [2,3.5] has a length of 3.5−2=1.5. Since we are using six subintervals of equal length, the width (Δx) of each subinterval is 61.5.
Calculate width: Calculate the width of each subinterval. Δx=61.5=0.25.
Identify right endpoints: Identify the x-values for the right endpoints of each subinterval. Since we are using right Riemann sums, we need the x-values at the right endpoints of each subinterval. Starting from x=2 and adding the width of each subinterval, we get the following x-values: 2.25, 2.5, 2.75, 3, 3.25, and 3.5.
Evaluate function at endpoints: Evaluate the function f(x)=2x at each of the right endpoints.f(2.25)=22.25f(2.5)=22.5f(2.75)=22.75f(3)=23f(3.25)=23.25f(3.5)=23.5
Calculate Riemann sum: Calculate the right Riemann sum approximation.Right Riemann sum = Δx∗(f(2.25)+f(2.5)+f(2.75)+f(3)+f(3.25)+f(3.5))= 0.25∗(22.25+22.5+22.75+23+23.25+23.5)
Perform sum calculations: Perform the calculations to find the sum.Right Riemann sum =0.25×(5.656854249+5.656854249+6.349604208+8+9.189586844+11.3137085)=0.25×(46.16660805)=11.54165201
Round to nearest thousandth: Round the result to the nearest thousandth.Right Riemann sum ≈11.542
More problems from Evaluate definite integrals using the chain rule