Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=2^(x). If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 
int_(2)^(3.5)2^(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=2x f(x)=2^{x} . If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 23.52xdx \int_{2}^{3.5} 2^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=2x f(x)=2^{x} . If six subintervals of equal length are used, what is the value of the right Riemann sum approximation for 23.52xdx \int_{2}^{3.5} 2^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Determine subinterval width: Determine the width of each subinterval.\newlineThe interval [2,3.5][2, 3.5] has a length of 3.52=1.53.5 - 2 = 1.5. Since we are using six subintervals of equal length, the width (Δx)(\Delta x) of each subinterval is 1.56\frac{1.5}{6}.
  2. Calculate width: Calculate the width of each subinterval. Δx=1.56=0.25\Delta x = \frac{1.5}{6} = 0.25.
  3. Identify right endpoints: Identify the xx-values for the right endpoints of each subinterval. Since we are using right Riemann sums, we need the xx-values at the right endpoints of each subinterval. Starting from x=2x = 2 and adding the width of each subinterval, we get the following xx-values: 2.252.25, 2.52.5, 2.752.75, 33, 3.253.25, and 3.53.5.
  4. Evaluate function at endpoints: Evaluate the function f(x)=2xf(x) = 2^x at each of the right endpoints.f(2.25)=22.25f(2.25) = 2^{2.25}f(2.5)=22.5f(2.5) = 2^{2.5}f(2.75)=22.75f(2.75) = 2^{2.75}f(3)=23f(3) = 2^{3}f(3.25)=23.25f(3.25) = 2^{3.25}f(3.5)=23.5f(3.5) = 2^{3.5}
  5. Calculate Riemann sum: Calculate the right Riemann sum approximation.\newlineRight Riemann sum = Δx(f(2.25)+f(2.5)+f(2.75)+f(3)+f(3.25)+f(3.5))\Delta x * (f(2.25) + f(2.5) + f(2.75) + f(3) + f(3.25) + f(3.5))\newline= 0.25(22.25+22.5+22.75+23+23.25+23.5)0.25 * (2^{2.25} + 2^{2.5} + 2^{2.75} + 2^{3} + 2^{3.25} + 2^{3.5})
  6. Perform sum calculations: Perform the calculations to find the sum.\newlineRight Riemann sum =0.25×(5.656854249+5.656854249+6.349604208+8+9.189586844+11.3137085)= 0.25 \times (5.656854249 + 5.656854249 + 6.349604208 + 8 + 9.189586844 + 11.3137085)\newline=0.25×(46.16660805)= 0.25 \times (46.16660805)\newline=11.54165201= 11.54165201
  7. Round to nearest thousandth: Round the result to the nearest thousandth.\newlineRight Riemann sum 11.542\approx 11.542

More problems from Evaluate definite integrals using the chain rule