Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int2x(x^(2)+1)^(2)dx=

2x(x2+1)2dx= \int 2 x\left(x^{2}+1\right)^{2} d x=

Full solution

Q. 2x(x2+1)2dx= \int 2 x\left(x^{2}+1\right)^{2} d x=
  1. Given Integral: We are given the integral to evaluate: \newline2x(x2+1)2dx\int 2x(x^2 + 1)^2 \, dx\newlineTo solve this integral, we will use substitution. Let's choose u=x2+1u = x^2 + 1, then du=2xdxdu = 2x \, dx.
  2. Substitution: Now we substitute uu into the integral and also express dxdx in terms of dudu:2x(x2+1)2dx=u2du\int 2x(x^2 + 1)^2 dx = \int u^2 du
  3. Integral of u2u^2: Next, we find the integral of u2u^2 with respect to uu: \newlineu2du=13u3+C\int u^2 \, du = \frac{1}{3}u^3 + C, where CC is the constant of integration.
  4. Substitute back to x: We substitute back the original variable x to get the answer in terms of x: 13u3+C=13(x2+1)3+C\frac{1}{3}u^3 + C = \frac{1}{3}(x^2 + 1)^3 + C
  5. Final Answer: Now we have the final answer:\newline2x(x2+1)2dx=13(x2+1)3+C\int 2x(x^2 + 1)^2 \, dx = \frac{1}{3}(x^2 + 1)^3 + C

More problems from Evaluate definite integrals using the power rule