Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int2^(x)dx=

2xdx= \int 2^{x} d x=

Full solution

Q. 2xdx= \int 2^{x} d x=
  1. Identify integral: Identify the integral to solve.\newlineWe need to find the integral of 2x2^x with respect to xx.\newlineCalculation: 2xdx\int 2^x \, dx
  2. Use formula for exponential functions: Use the formula for integrating exponential functions.\newlineFor axa^x, the integral is (ax)/(ln(a))+C(a^x)/(\ln(a)) + C, where CC is the constant of integration.\newlineCalculation: 2xdx=(2x)/(ln(2))+C\int 2^x \, dx = (2^x)/(\ln(2)) + C

More problems from Evaluate definite integrals using the power rule