Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

xtan1(x)(1+x2)32dx\int \frac{x\tan^{-1}(x)}{(1+x^{2})^{\frac{3}{2}}}dx

Full solution

Q. xtan1(x)(1+x2)32dx\int \frac{x\tan^{-1}(x)}{(1+x^{2})^{\frac{3}{2}}}dx
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function xtan1x(1+x2)32\frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}} with respect to xx. This is an indefinite integral, and we will look for a substitution that simplifies the integral.
  2. Choose Substitution: Choose a substitution.\newlineLet u=tan1xu = \tan^{-1}x, which implies that x=tan(u)x = \tan(u). Then, we need to find dxdx in terms of dudu. To do this, we differentiate both sides with respect to uu to get dxdu=sec2(u)\frac{dx}{du} = \sec^2(u). Therefore, dx=sec2(u)dudx = \sec^2(u)du.
  3. Rewrite in terms of u: Rewrite the integral in terms of u.\newlineSubstituting x=tan(u)x = \tan(u) and dx=sec2(u)dudx = \sec^2(u)du into the integral, we get:\newlinextan1x(1+x2)32dx=tan(u)u(1+tan2(u))32sec2(u)du.\int \frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}}dx = \int \frac{\tan(u) \cdot u}{(1+\tan^2(u))^{\frac{3}{2}}} \cdot \sec^2(u)du.\newlineSince 1+tan2(u)=sec2(u)1 + \tan^2(u) = \sec^2(u), the integral simplifies to:\newlinetan(u)usec3(u)sec2(u)du=tan(u)usec1(u)du.\int \frac{\tan(u) \cdot u}{\sec^3(u)} \cdot \sec^2(u)du = \int \tan(u) \cdot u \cdot \sec^{-1}(u)du.
  4. Simplify Further: Simplify the integral further.\newlineSince sec(u)=1cos(u)\sec(u) = \frac{1}{\cos(u)} and tan(u)=sin(u)cos(u)\tan(u) = \frac{\sin(u)}{\cos(u)}, we can rewrite the integral as:\newline(sin(u)cos(u)u)cos(u)du=usin(u)du.\int \left(\frac{\sin(u)}{\cos(u)} \cdot u\right) \cdot \cos(u)\,du = \int u \cdot \sin(u)\,du.\newlineNow we have an integral that can be solved using integration by parts.
  5. Apply Integration by Parts: Apply integration by parts.\newlineLet's use the formula for integration by parts: udv=uvvdu\int u \, dv = uv - \int v \, du. We choose u=uu = u and dv=sin(u)dudv = \sin(u)du, which gives us du=dudu = du and v=cos(u)v = -\cos(u).\newlineApplying integration by parts, we get:\newlineusin(u)du=ucos(u)(cos(u))du=ucos(u)+cos(u)du\int u \sin(u)du = -u \cos(u) - \int (-\cos(u))du = -u \cos(u) + \int \cos(u)du.
  6. Integrate cos(u)\cos(u): Integrate cos(u)\cos(u). The integral of cos(u)\cos(u) with respect to uu is sin(u)\sin(u), so we have: usin(u)du=ucos(u)+sin(u)+C,\int u \cdot \sin(u)\,du = -u \cdot \cos(u) + \sin(u) + C, where CC is the constant of integration.
  7. Convert to x: Convert back to x.\newlineWe need to express our result in terms of xx. Since u=tan1xu = \tan^{-1}x and cos(u)=11+x2\cos(u) = \frac{1}{\sqrt{1+x^2}}, we have:\newlineucos(u)+sin(u)+C=tan1x11+x2+1+x211+x2+C-u \cdot \cos(u) + \sin(u) + C = -\tan^{-1}x \cdot \frac{1}{\sqrt{1+x^2}} + \sqrt{1+x^2} \cdot \frac{1}{\sqrt{1+x^2}} + C.\newlineThis simplifies to:\newlinetan1x1+x2+1+C-\frac{\tan^{-1}x}{\sqrt{1+x^2}} + 1 + C.
  8. Write Final Answer: Write the final answer.\newlineThe integral of xtan1x(1+x2)32\frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}} with respect to xx is:\newlinetan1x1+x2+1+C-\frac{\tan^{-1}x}{\sqrt{1+x^2}} + 1 + C.

More problems from Evaluate definite integrals using the chain rule