Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Integrate.
int(x+5)/(x^(2)-2x-3)dx

Integrate.\newlinex+5x22x3dx \int \frac{x+5}{x^{2}-2 x-3} d x

Full solution

Q. Integrate.\newlinex+5x22x3dx \int \frac{x+5}{x^{2}-2 x-3} d x
  1. Factor Denominator: Factor the denominator of the integrand.\newlineThe denominator x22x3x^2 - 2x - 3 can be factored into (x3)(x+1)(x - 3)(x + 1).
  2. Partial Fraction Decomposition: Perform partial fraction decomposition.\newlineWe want to express (x+5)/(x22x3)(x+5)/(x^2-2x-3) as A/(x3)+B/(x+1)A/(x-3) + B/(x+1).
  3. Find AA and BB: Find the values of AA and BB. To find AA and BB, we multiply both sides by the denominator (x22x3)(x^2-2x-3) to get: x+5=A(x+1)+B(x3)x + 5 = A(x + 1) + B(x - 3). Now we can solve for AA and BB by choosing suitable values for BB00.
  4. Solve for BB: Choose x=3x = 3 to solve for BB.\newlinePlugging x=3x = 3 into the equation, we get:\newline3+5=A(3+1)+B(33)3 + 5 = A(3 + 1) + B(3 - 3),\newline8=4A+0B8 = 4A + 0B,\newlineA=2A = 2.
  5. Solve for A: Choose x=1x = -1 to solve for A.\newlinePlugging x=1x = -1 into the equation, we get:\newline1+5=A(1+1)+B(13)-1 + 5 = A(-1 + 1) + B(-1 - 3),\newline4=0A4B4 = 0A - 4B,\newlineB=1B = -1.
  6. Write Decomposition: Write the partial fraction decomposition.\newlineNow that we have A=2A = 2 and B=1B = -1, we can write:\newline(x+5)/(x22x3)=2/(x3)1/(x+1)(x+5)/(x^2-2x-3) = 2/(x-3) - 1/(x+1).
  7. Integrate Fractions: Integrate the partial fractions.\newlineThe integral of 2x31x+1\frac{2}{x-3} - \frac{1}{x+1} is:\newline2lnx3lnx+1+C2 \cdot \ln|x-3| - \ln|x+1| + C, where CC is the constant of integration.
  8. Combine Logarithms: Combine the logarithms.\newlineUsing properties of logarithms, we can combine the two terms:\newlineln$x3\ln|\$x-3^22| - \ln|x+11| + C\).
  9. Simplify Expression: Simplify the expression.\newlineThe final answer is:\newlineln(x3)2(x+1)+C\ln\left|\frac{(x-3)^2}{(x+1)}\right| + C.

More problems from Evaluate definite integrals using the power rule