Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x3dx(x2+1)32\int \frac{x^{3} \, dx}{(x^{2}+1)^{\frac{3}{2}}}

Full solution

Q. x3dx(x2+1)32\int \frac{x^{3} \, dx}{(x^{2}+1)^{\frac{3}{2}}}
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral x3dx(x2+1)32\int \frac{x^3 \, dx}{(x^2 + 1)^{\frac{3}{2}}}.
  2. Use Substitution: Use substitution to simplify the integral.\newlineLet u=x2+1u = x^2 + 1. Then du=2xdxdu = 2x dx, which implies (1/2)du=xdx(1/2)du = x dx.
  3. Rewrite in terms of uu: Rewrite the integral in terms of uu.\newlineSubstitute x2=u1x^2 = u - 1 into the integral and use the differential substitution from Step 22:\newlinex3dx(x2+1)32=x2xdx(x2+1)32\int\frac{x^3 dx}{(x^2 + 1)^{\frac{3}{2}}} = \int\frac{x^2 \cdot x dx}{(x^2 + 1)^{\frac{3}{2}}}\newline=(u1)12duu32= \int\frac{(u - 1) \cdot \frac{1}{2}du}{u^{\frac{3}{2}}}\newline=12(u1)u32du= \frac{1}{2} \int\frac{(u - 1)}{u^{\frac{3}{2}}} du
  4. Split into simpler integrals: Split the integral into two simpler integrals.\newline(1/2) \int((u - 1) / u^{(3/2)}) du = (1/2) \int(u / u^{(3/2)} - 1 / u^{(3/2)}) du\(\newline= (1/2) \int(u^{-1/2} - u^{-3/2}) du\)
  5. Integrate each term: Integrate each term separately.\newline(1/2)(u1/2u3/2)du=(1/2)[u1/2duu3/2du](1/2) \int(u^{-1/2} - u^{-3/2}) du = (1/2) [\int u^{-1/2} du - \int u^{-3/2} du]\newline=(1/2)[2u1/22u1/2/(1)]= (1/2) [2u^{1/2} - 2u^{-1/2}/(-1)]\newline=u1/2+u1/2= u^{1/2} + u^{-1/2}
  6. Substitute back in xx: Substitute back in terms of xx.\newlineSince u=x2+1u = x^2 + 1, we have:\newlineu(1/2)+u(1/2)=(x2+1)(1/2)+1(x2+1)(1/2)u^{(1/2)} + u^{(-1/2)} = (x^2 + 1)^{(1/2)} + \frac{1}{(x^2 + 1)^{(1/2)}}
  7. Write final answer: Write the final answer.\newlineThe integral x3dx(x2+1)32\int \frac{x^3 \, dx}{(x^2 + 1)^{\frac{3}{2}}} is equal to (x2+1)12+1(x2+1)12+C(x^2 + 1)^{\frac{1}{2}} + \frac{1}{(x^2 + 1)^{\frac{1}{2}}} + C, where CC is the constant of integration.

More problems from Evaluate definite integrals using the chain rule