Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(x^(3)+6x+1)/((x+2)^(2)(x^(2)+3))dx=

x3+6x+1(x+2)2(x2+3)dx \int \frac{x^{3}+6 x+1}{(x+2)^{2}\left(x^{2}+3\right)} d x =

Full solution

Q. x3+6x+1(x+2)2(x2+3)dx \int \frac{x^{3}+6 x+1}{(x+2)^{2}\left(x^{2}+3\right)} d x =
  1. Partial Fraction Decomposition: To solve the integral of the given function, we will use partial fractions" target="_blank" class="backlink">fraction decomposition. The first step is to express the integrand as a sum of simpler fractions.
  2. Equation Expansion and Collection: The denominator (x+2)2(x2+3)(x + 2)^2 * (x^2 + 3) suggests that our partial fraction decomposition will have the form:\newlineA(x+2)+B(x+2)2+Cx+D(x2+3)\frac{A}{(x + 2)} + \frac{B}{(x + 2)^2} + \frac{Cx + D}{(x^2 + 3)}\newlinewhere AA, BB, CC, and DD are constants that we need to determine.
  3. Coefficient Equations and Solution: We multiply both sides of the equation by the denominator to clear the fractions: x3+6x+1=A(x+2)(x2+3)+B(x2+3)+(Cx+D)(x+2)2x^3 + 6x + 1 = A(x + 2)(x^2 + 3) + B(x^2 + 3) + (Cx + D)(x + 2)^2
  4. Substitution and Simplification: Now we need to expand the right side and collect like terms to solve for AA, BB, CC, and DD.
  5. Final Values of Constants: Expanding the right side, we get: \newlinex3+6x+1=Ax3+3Ax+2Ax2+6A+Bx2+3B+Cx3+2Cx2+4Cx+D+4Dx+4Dx^3 + 6x + 1 = Ax^3 + 3Ax + 2Ax^2 + 6A + Bx^2 + 3B + Cx^3 + 2Cx^2 + 4Cx + D + 4Dx + 4D
  6. Integral Splitting: Combining like terms, we have: x3+6x+1=(A+C)x3+(2A+B+2C)x2+(3A+4C+4D)x+(6A+3B+D)x^3 + 6x + 1 = (A + C)x^3 + (2A + B + 2C)x^2 + (3A + 4C + 4D)x + (6A + 3B + D)
  7. Logarithmic Integral: Now we equate the coefficients of the corresponding powers of xx on both sides of the equation to solve for AA, BB, CC, and DD:
    11. For x3x^3: A+C=1A + C = 1
    22. For x2x^2: 2A+B+2C=02A + B + 2C = 0
    33. For xx: AA00
    44. Constant term: AA11
  8. Power Rule Integral: We have a system of four equations with four unknowns. We can solve this system using substitution or elimination methods.
  9. Substitution for Arctangent Integral: From equation 11, we get C=1AC = 1 - A.
  10. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.
  11. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4
  12. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000
  13. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 000\newlineSince C=1AC = 1 - A, we can substitute and solve for 2A+B+2(1A)=02A + B + 2(1 - A) = 055.
  14. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 000\newlineSince C=1AC = 1 - A, we can substitute and solve for 2A+B+2(1A)=02A + B + 2(1 - A) = 055.Substituting C=1AC = 1 - A into 2A+B+2(1A)=02A + B + 2(1 - A) = 000, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 088\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 099
  15. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 000\newlineSince C=1AC = 1 - A, we can substitute and solve for 2A+B+2(1A)=02A + B + 2(1 - A) = 055.Substituting C=1AC = 1 - A into 2A+B+2(1A)=02A + B + 2(1 - A) = 000, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 088\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 099Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 099\newlineEquating them, we get:\newlineB=2B = -233\newlineMultiplying both sides by 44 to clear the fraction, we get:\newlineB=2B = -244\newlineSolving for 2A+B+2(1A)=02A + B + 2(1 - A) = 055, we find B=2B = -266
  16. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 000\newlineSince C=1AC = 1 - A, we can substitute and solve for 2A+B+2(1A)=02A + B + 2(1 - A) = 055.Substituting C=1AC = 1 - A into 2A+B+2(1A)=02A + B + 2(1 - A) = 000, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 088\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 099Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 099\newlineEquating them, we get:\newlineB=2B = -233\newlineMultiplying both sides by 44 to clear the fraction, we get:\newlineB=2B = -244\newlineSolving for 2A+B+2(1A)=02A + B + 2(1 - A) = 055, we find B=2B = -266Substituting B=2B = -266 into C=1AC = 1 - A, we get B=2B = -299.
  17. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 000Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 000\newlineSince C=1AC = 1 - A, we can substitute and solve for 2A+B+2(1A)=02A + B + 2(1 - A) = 055.Substituting C=1AC = 1 - A into 2A+B+2(1A)=02A + B + 2(1 - A) = 000, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 088\newlineSimplifying, we find 2A+B+2(1A)=02A + B + 2(1 - A) = 099Now we have two expressions for 2A+B+2(1A)=02A + B + 2(1 - A) = 011:\newlineD=(2+A)/4D = (2 + A)/4\newline2A+B+2(1A)=02A + B + 2(1 - A) = 099\newlineEquating them, we get:\newlineB=2B = -233\newlineMultiplying both sides by 44 to clear the fraction, we get:\newlineB=2B = -244\newlineSolving for 2A+B+2(1A)=02A + B + 2(1 - A) = 055, we find B=2B = -266Substituting B=2B = -266 into C=1AC = 1 - A, we get B=2B = -299.Substituting B=2B = -266 into 2A+B+2(1A)=02A + B + 2(1 - A) = 099, we get C=1AC = 1 - A22.
  18. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44
  19. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55
  20. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66
  21. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77
  22. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A88
  23. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A88The third integral can be split into two parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A99
  24. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=2+A4D = \frac{2 + A}{4}Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=2+A4D = \frac{2 + A}{4}\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=2+A4D = \frac{2 + A}{4}\newlineB=2B = -255\newlineEquating them, we get:\newline2+A4=16A\frac{2 + A}{4} = 1 - 6A\newlineMultiplying both sides by B=2B = -299 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A11Substituting C=1AC = 1 - A11 into C=1AC = 1 - A, we get C=1AC = 1 - A44.Substituting C=1AC = 1 - A11 into B=2B = -255, we get C=1AC = 1 - A77.Now we have the values of B=2B = -222, C=1AC = 1 - A99, 4D=63A4+4A4D = 6 - 3A - 4 + 4A00, and DD:\newlineC=1AC = 1 - A11, B=2B = -2, C=1AC = 1 - A44, 4D=63A4+4A4D = 6 - 3A - 4 + 4A55We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A88The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A99The third integral can be split into two parts:\newlineD=2+A4D = \frac{2 + A}{4}00For the first part of the third integral, we use a substitution:\newlineLet D=2+A4D = \frac{2 + A}{4}11, then D=2+A4D = \frac{2 + A}{4}22.
  25. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A88The third integral can be split into two parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A99For the first part of the third integral, we use a substitution:\newlineLet D=(2+A)/4D = (2 + A)/400, then D=(2+A)/4D = (2 + A)/411.Substituting, we get:\newlineD=(2+A)/4D = (2 + A)/422\newlineSubstituting back, we get:\newlineD=(2+A)/4D = (2 + A)/433
  26. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=(2+A)/4D = (2 + A)/4Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=(2+A)/4D = (2 + A)/4\newlineB=2B = -255\newlineEquating them, we get:\newline(2+A)/4=16A(2 + A)/4 = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66The first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A88The third integral can be split into two parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A99For the first part of the third integral, we use a substitution:\newlineLet D=(2+A)/4D = (2 + A)/400, then D=(2+A)/4D = (2 + A)/411.Substituting, we get:\newlineD=(2+A)/4D = (2 + A)/422\newlineSubstituting back, we get:\newlineD=(2+A)/4D = (2 + A)/433For the second part of the third integral, we have an arctangent integral:\newlineD=(2+A)/4D = (2 + A)/444
  27. Combining All Parts: Substituting C=1AC = 1 - A into equation 22, we get:\newline2A+B+2(1A)=02A + B + 2(1 - A) = 0\newlineSimplifying, we find B=2B = -2.Substituting C=1AC = 1 - A into equation 33, we get:\newline3A+4(1A)+4D=63A + 4(1 - A) + 4D = 6\newlineSimplifying, we find 4D=63A4+4A4D = 6 - 3A - 4 + 4A\newlineSo, D=2+A4D = \frac{2 + A}{4}Substituting A=1CA = 1 - C and B=2B = -2 into equation 44, we get:\newline6(1C)6+D=16(1 - C) - 6 + D = 1\newlineSimplifying, we find D=1+6C6D = 1 + 6C - 6Now we have two expressions for DD:\newlineD=2+A4D = \frac{2 + A}{4}\newlineD=1+6C6D = 1 + 6C - 6\newlineSince C=1AC = 1 - A, we can substitute and solve for B=2B = -222.Substituting C=1AC = 1 - A into D=1+6C6D = 1 + 6C - 6, we get:\newlineD=1+6(1A)6D = 1 + 6(1 - A) - 6\newlineSimplifying, we find B=2B = -255Now we have two expressions for DD:\newlineD=2+A4D = \frac{2 + A}{4}\newlineB=2B = -255\newlineEquating them, we get:\newline2+A4=16A\frac{2 + A}{4} = 1 - 6A\newlineMultiplying both sides by 44 to clear the fraction, we get:\newline2+A=424A2 + A = 4 - 24A\newlineSolving for B=2B = -222, we find C=1AC = 1 - A00Substituting C=1AC = 1 - A00 into C=1AC = 1 - A, we get C=1AC = 1 - A33.Substituting C=1AC = 1 - A00 into B=2B = -255, we get C=1AC = 1 - A66.Now we have the values of B=2B = -222, C=1AC = 1 - A88, C=1AC = 1 - A99, and DD:\newlineC=1AC = 1 - A00, B=2B = -2, C=1AC = 1 - A33, 4D=63A4+4A4D = 6 - 3A - 4 + 4A44We can now write the partial fraction decomposition as:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A55/(x + 22) - \frac{22}{(x + 22)^22} + \frac{(2424/2525)x + 1919/2525}{(x^22 + 33)}\)The integral can now be split into three parts:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66/(x + 22)dx - 4D=63A4+4A4D = 6 - 3A - 4 + 4A77/(x + 22)^22dx + 4D=63A4+4A4D = 6 - 3A - 4 + 4A88dxThe first integral is a simple logarithmic integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A66/(x + 22)dx = \frac{11}{2525}\ln|x + 22| + C11The second integral is a simple power rule integral:\newline4D=63A4+4A4D = 6 - 3A - 4 + 4A77/(x + 22)^22dx = -\frac{22}{(x + 22)} + C22The third integral can be split into two parts:\newlineD=2+A4D = \frac{2 + A}{4}11/(x^22 + 33)dx + D=2+A4D = \frac{2 + A}{4}22/(x^22 + 33)dxFor the first part of the third integral, we use a substitution:\newlineLet D=2+A4D = \frac{2 + A}{4}33, then D=2+A4D = \frac{2 + A}{4}44.Substituting, we get:\newlineD=2+A4D = \frac{2 + A}{4}11/(x^22 + 33)dx = \frac{2424}{5050}\int \frac{11}{u}du = \frac{2424}{5050}\ln|u| + C33\newlineSubstituting back, we get:\newlineD=2+A4D = \frac{2 + A}{4}66For the second part of the third integral, we have an arctangent integral:\newlineD=2+A4D = \frac{2 + A}{4}22/(x^22 + 33)dx = \frac{1919}{2525}(\frac{11}{\sqrt{33}})\arctan(\frac{x}{\sqrt{33}}) + C44Combining all the parts, we get the final answer:\newlineD=2+A4D = \frac{2 + A}{4}88\newlinewhere D=2+A4D = \frac{2 + A}{4}99 is the constant of integration.

More problems from Evaluate definite integrals using the chain rule