Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(x^(2)dx)/(x^(2)-4)=

x2dxx24 \int \frac{x^{2} d x}{x^{2}-4} =

Full solution

Q. x2dxx24 \int \frac{x^{2} d x}{x^{2}-4} =
  1. Simplify Integral Expression: Step 11: Simplify the integral expression.\newlineWe start by noticing that the integral can be simplified by partial fractions, but first, let's check if direct integration is possible.\newlineThe integral is x2x24dx\int\frac{x^2}{x^2 - 4} \, dx.
  2. Attempt Direct Integration: Step 22: Attempt direct integration.\newlineWe attempt to simplify the integrand:\newlinex2x24=1+4x24\frac{x^2}{x^2 - 4} = 1 + \frac{4}{x^2 - 4}.\newlineNow, we integrate each part separately:\newlinex2x24dx=1dx+4x24dx\int \frac{x^2}{x^2 - 4} dx = \int 1 dx + \int \frac{4}{x^2 - 4} dx.
  3. Integrate First Part: Step 33: Integrate the first part.\newlineThe integral of 11 with respect to xx is xx.\newlineSo, 1dx=x\int 1 \, dx = x.
  4. Integrate Second Part: Step 44: Integrate the second part using partial fractions.\newlineWe decompose 4x24\frac{4}{x^2 - 4} into partial fractions:\newline4x24=4(x2)(x+2)=Ax2+Bx+2\frac{4}{x^2 - 4} = \frac{4}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}.\newlineSolving for AA and BB, we find A=1A = 1, B=1B = 1.\newlineSo, 4x24=1x2+1x+2\frac{4}{x^2 - 4} = \frac{1}{x-2} + \frac{1}{x+2}.\newlineNow, integrate:\newline4x24dx=(1x2+1x+2)dx=lnx2+lnx+2+C\int \frac{4}{x^2 - 4} dx = \int (\frac{1}{x-2} + \frac{1}{x+2}) dx = \ln|x-2| + \ln|x+2| + C.
  5. Combine Results: Step 55: Combine the results.\newlineThe integral of the original function is:\newlinex2x24dx=x+lnx2+lnx+2+C\int\frac{x^2}{x^2 - 4} dx = x + \ln|x-2| + \ln|x+2| + C.

More problems from Evaluate definite integrals using the chain rule