Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral. int(x^(2)+1)/(sqrt(x^(3)+3x+20))dx.

Evaluate the integral.x2+1x3+3x+20dx \int \frac{x^{2}+1}{\sqrt{x^{3}+3 x+20}} d x .

Full solution

Q. Evaluate the integral.x2+1x3+3x+20dx \int \frac{x^{2}+1}{\sqrt{x^{3}+3 x+20}} d x .
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function x2+1x3+3x+20\frac{x^2 + 1}{\sqrt{x^3 + 3x + 20}} with respect to xx.
  2. Find Substitution: Look for a substitution that simplifies the integral.\newlineLet u=x3+3x+20u = x^3 + 3x + 20, then dudx=3x2+3\frac{du}{dx} = 3x^2 + 3. Notice that x2x^2 is part of the derivative of uu, which suggests that this substitution might be useful.
  3. Express x2x^2: Express x2x^2 in terms of uu and dudu.\newlineSince dudx=3x2+3\frac{du}{dx} = 3x^2 + 3, we can solve for x2x^2: x2=du/dx33x^2 = \frac{du/dx - 3}{3}. We will use this expression to replace x2x^2 in the integral.
  4. Perform Substitution: Perform the substitution in the integral.\newlineSubstitute uu for x3+3x+20x^3 + 3x + 20 and (dudx3)/3(\frac{du}{dx} - 3)/3 for x2x^2 in the integral. The integral becomes:\newline(dudx33+1)/udx\int\left(\frac{\frac{du}{dx} - 3}{3} + 1\right) / \sqrt{u} \, dx
  5. Simplify Integral: Simplify the integral.\newlineThe integral simplifies to:\newline(13dudx1+1)/udx\int\left(\frac{1}{3} \frac{du}{dx} - 1 + 1\right) / \sqrt{u} \, dx\newline= (13dudx)/udx\int\left(\frac{1}{3} \frac{du}{dx}\right) / \sqrt{u} \, dx\newline= 13duu\frac{1}{3} \int\frac{du}{\sqrt{u}}
  6. Integrate with u: Integrate with respect to uu. The integral of 1u\frac{1}{\sqrt{u}} with respect to uu is 2u2\sqrt{u}, so we have: 13×2×u+C=(23)×u+C\frac{1}{3} \times 2 \times \sqrt{u} + C = \left(\frac{2}{3}\right) \times \sqrt{u} + C
  7. Substitute back: Substitute back for uu. Replace uu with x3+3x+20x^3 + 3x + 20 to get the final answer: 23x3+3x+20+C\frac{2}{3} \cdot \sqrt{x^3 + 3x + 20} + C

More problems from Evaluate definite integrals using the chain rule