Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int_((pi)/(8))^((pi)/(8))sin^(2)(2x)dx

Evaluate the integral: π8π8sin2(2x)dx \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin ^{2}(2 x) d x

Full solution

Q. Evaluate the integral: π8π8sin2(2x)dx \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin ^{2}(2 x) d x
  1. Recognize Property of Integral: Recognize that the integral of a function from aa to aa is always zero.\newlineSince the upper and lower limits of the integral are the same, the integral evaluates to zero regardless of the integrand.\newlineπ8π8sin2(2x)dx=0\int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^2(2x) \, dx = 0
  2. Apply Property to Given Function: Conclude the solution.\newlineSince the integral of any function over an interval where the upper and lower limits are the same is zero, we can conclude that the integral of sin2(2x)\sin^2(2x) from (π/8)(\pi/8) to (π/8)(\pi/8) is zero.

More problems from Evaluate definite integrals using the chain rule