Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int_((-pi)/(8))^((pi)/(8))sin^(2)(2x)dx

Evaluate the integral: π8π8sin2(2x)dx \int_{\frac{-\pi}{8}}^{\frac{\pi}{8}} \sin ^{2}(2 x) d x

Full solution

Q. Evaluate the integral: π8π8sin2(2x)dx \int_{\frac{-\pi}{8}}^{\frac{\pi}{8}} \sin ^{2}(2 x) d x
  1. Apply power-reduction formula: Use the power-reduction formula for sine, which states that sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}. This will simplify the integral.\newlinesin2(2x)=1cos(4x)2\sin^2(2x) = \frac{1 - \cos(4x)}{2}\newlineThe integral becomes:\newline(π)/(8)(π)/(8)sin2(2x)dx=(π)/(8)(π)/(8)(1212cos(4x))dx\int_{(-\pi)/(8)}^{(\pi)/(8)}\sin^{2}(2x)dx = \int_{(-\pi)/(8)}^{(\pi)/(8)}\left(\frac{1}{2} - \frac{1}{2} \cos(4x)\right)dx
  2. Split into two integrals: Split the integral into two separate integrals. \int_{(-\pi)/(\(8\))}^{(\pi)/(\(8\))}(\frac{\(1\)}{\(2\)} - \frac{\(1\)}{\(2\)} \cos(\(4x))dx = \frac{11}{22} \int_{(-\pi)/(88)}^{(\pi)/(88)}dx - \frac{11}{22} \int_{(-\pi)/(88)}^{(\pi)/(88)}\cos(44x)dx
  3. Evaluate constant integral: Evaluate the first integral, which is a constant with respect to xx.12(π)/(8)(π)/(8)dx=12[x](π)/(8)(π)/(8)=12[(π/8)(π/8)]=12(π/4)=π/8\frac{1}{2} \int_{(-\pi)/(8)}^{(\pi)/(8)}dx = \frac{1}{2} [x]_{(-\pi)/(8)}^{(\pi)/(8)} = \frac{1}{2} [(\pi/8) - (-\pi/8)] = \frac{1}{2} \cdot (\pi/4) = \pi/8
  4. Integrate cosine function: Evaluate the second integral, which involves the cosine function.\newline12\frac{1}{2} (π)/(8)(π)/(8)cos(4x)dx\int_{(-\pi)/(8)}^{(\pi)/(8)}\cos(4x)\,dx\newlineTo integrate cos(4x)\cos(4x), we use the substitution u=4xu = 4x, which gives us du=4dxdu = 4dx or dx=du4dx = \frac{du}{4}.
  5. Change limits with substitution: Change the limits of integration according to the substitution u=4xu = 4x.\newlineWhen x=π8x = -\frac{\pi}{8}, u=π2u = -\frac{\pi}{2}.\newlineWhen x=π8x = \frac{\pi}{8}, u=π2u = \frac{\pi}{2}.\newlineThe integral becomes:\newline12×14π2π2cos(u)du\frac{1}{2} \times \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos(u)\,du
  6. Evaluate integral of cosine: Evaluate the integral of cos(u)\cos(u) from π/2-\pi/2 to π/2\pi/2.12×14(π)/(2)(π)/(2)cos(u)du=18[sin(u)](π)/(2)(π)/(2)=18[sin(π/2)sin(π/2)]=18×(1(1))=18×2=14\frac{1}{2} \times \frac{1}{4} \int_{(-\pi)/(2)}^{(\pi)/(2)}\cos(u)\,du = \frac{1}{8} [\sin(u)]_{(-\pi)/(2)}^{(\pi)/(2)} = \frac{1}{8} [\sin(\pi/2) - \sin(-\pi/2)] = \frac{1}{8} \times (1 - (-1)) = \frac{1}{8} \times 2 = \frac{1}{4}
  7. Combine results for final answer: Combine the results from Step 33 and Step 66 to get the final answer.\newlineThe integral of sin2(2x)\sin^2(2x) from (π/8)(-\pi/8) to (π/8)(\pi/8) is:\newlineπ/81/4\pi/8 - 1/4
  8. Simplify final answer: Simplify the final answer. π814=π28\frac{\pi}{8} - \frac{1}{4} = \frac{\pi - 2}{8}

More problems from Evaluate definite integrals using the chain rule