Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_((pi)/(6))^((pi)/(3))((1)/(cos^(2)x)-(1)/(sin^(2)x))dx
0,5
0

π6π3(1cos2x1sin2x)dx \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\frac{1}{\cos ^{2} x}-\frac{1}{\sin ^{2} x}\right) d x \newline00,55\newline00

Full solution

Q. π6π3(1cos2x1sin2x)dx \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\frac{1}{\cos ^{2} x}-\frac{1}{\sin ^{2} x}\right) d x \newline00,55\newline00
  1. Simplify integrand: Step 11: Simplify the integrand.\newlineWe start by recognizing that 1cos2(x)\frac{1}{\cos^2(x)} is sec2(x)\sec^2(x) and 1sin2(x)\frac{1}{\sin^2(x)} is csc2(x)\csc^2(x). So, the integral becomes:\newline(sec2(x)csc2(x))dx\int(\sec^2(x) - \csc^2(x)) \, dx
  2. Separate the integral: Step 22: Separate the integral.\newlineThe integral of sec2(x)\sec^2(x) is tan(x)\tan(x), and the integral of csc2(x)\csc^2(x) is cot(x)-\cot(x). Therefore:\newlinesec2(x)dxcsc2(x)dx=tan(x)+cot(x)\int \sec^2(x) \, dx - \int \csc^2(x) \, dx = \tan(x) + \cot(x)
  3. Evaluate limits: Step 33: Evaluate from π6\frac{\pi}{6} to π3\frac{\pi}{3}.\newlinePlug in the limits of integration:\newline[tan(x)+cot(x)][\tan(x) + \cot(x)] evaluated from π6\frac{\pi}{6} to π3\frac{\pi}{3}\newline= [tan(π3)+cot(π3)][tan(π6)+cot(π6)][\tan(\frac{\pi}{3}) + \cot(\frac{\pi}{3})] - [\tan(\frac{\pi}{6}) + \cot(\frac{\pi}{6})]
  4. Calculate values: Step 44: Calculate the values.\newlinetan(π3)=3\tan(\frac{\pi}{3}) = \sqrt{3}, cot(π3)=13\cot(\frac{\pi}{3}) = \frac{1}{\sqrt{3}}, tan(π6)=13\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}, cot(π6)=3\cot(\frac{\pi}{6}) = \sqrt{3}\newlineSo, [3+13][13+3]=0[\sqrt{3} + \frac{1}{\sqrt{3}}] - [\frac{1}{\sqrt{3}} + \sqrt{3}] = 0

More problems from Evaluate definite integrals using the chain rule