Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

()()11+x2dx\int_{(-\infty)}^{(\infty)}\frac{1}{1+x^{2}}dx

Full solution

Q. ()()11+x2dx\int_{(-\infty)}^{(\infty)}\frac{1}{1+x^{2}}dx
  1. Recognize Derivative Relationship: We recognize that the function 11+x2\frac{1}{1+x^2} is the derivative of arctan(x)\text{arctan}(x). Therefore, we can use the antiderivative of 11+x2\frac{1}{1+x^2} to evaluate the integral.\newlineAntiderivative: (11+x2)dx=arctan(x)+C\int(\frac{1}{1+x^2})dx = \text{arctan}(x) + C
  2. Evaluate Antiderivative Limits: We need to evaluate the antiderivative from -\infty to \infty. So we calculate the limit as xx approaches \infty and as xx approaches -\infty of arctan(x)\text{arctan}(x). limxarctan(x)=π2\lim_{x\to\infty} \text{arctan}(x) = \frac{\pi}{2} limxarctan(x)=π2\lim_{x\to-\infty} \text{arctan}(x) = -\frac{\pi}{2}
  3. Find Definite Integral: Now we can find the definite integral by subtracting the value of the antiderivative at the lower limit from the value at the upper limit.\newline()()11+x2dx=arctan()arctan()\int_{(-\infty)}^{(\infty)}\frac{1}{1+x^2}\,dx = \text{arctan}(\infty) - \text{arctan}(-\infty)\newline=π2(π2)= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\newline=π2+π2= \frac{\pi}{2} + \frac{\pi}{2}\newline=π= \pi

More problems from Evaluate definite integrals using the chain rule