Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(dx)/(sqrtxe^((40sqrtx)))=

dxxe(40x)= \int \frac{d x}{\sqrt{x} e^{(40 \sqrt{x})}}=

Full solution

Q. dxxe(40x)= \int \frac{d x}{\sqrt{x} e^{(40 \sqrt{x})}}=
  1. Make Substitution: Simplify the integral by making a substitution.\newlineLet u=xu = \sqrt{x}, which implies that x=u2x = u^2. Now, differentiate both sides with respect to uu to find dxdx in terms of dudu.\newlineddu(u2)=2u\frac{d}{du}(u^2) = 2u\newlinedx=2ududx = 2u \, du
  2. Rewrite in Terms of uu: Rewrite the integral in terms of uu. The integral becomes: dxxe40x=2uduue40u\int\frac{\mathrm{d}x}{\sqrt{x}e^{40\sqrt{x}}} = \int\frac{2u \mathrm{d}u}{u e^{40u}} Simplify the integrand by canceling uu in the numerator and denominator. 2uduue40u=2due40u\int\frac{2u \mathrm{d}u}{u e^{40u}} = \int\frac{2 \mathrm{d}u}{e^{40u}}
  3. Evaluate Integral: Evaluate the integral.\newlineThe integral of 2e40u\frac{2}{e^{40u}} with respect to uu is a standard exponential integral.\newline2due40u=2401e40u+C\int \frac{2 \, du}{e^{40u}} = -\frac{2}{40} \cdot \frac{1}{e^{40u}} + C\newline=1201e40u+C= -\frac{1}{20} \cdot \frac{1}{e^{40u}} + C
  4. Substitute Back: Substitute back the original variable xx.\newlineSince u=xu = \sqrt{x}, we have:\newline1201e40u+C=1201e40x+C-\frac{1}{20} \cdot \frac{1}{e^{40u}} + C = -\frac{1}{20} \cdot \frac{1}{e^{40\sqrt{x}}} + C
  5. Write Final Answer: Write the final answer.\newlineThe integral of dxxe40x\frac{dx}{\sqrt{x}e^{40\sqrt{x}}} is:\newline120×1e40x+C-\frac{1}{20} \times \frac{1}{e^{40\sqrt{x}}} + C

More problems from Evaluate definite integrals using the power rule