Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

dx2x2+8x+4\int \frac{dx}{\sqrt{-2x^{2}+8x+4}}

Full solution

Q. dx2x2+8x+4\int \frac{dx}{\sqrt{-2x^{2}+8x+4}}
  1. Given Integral: We are given the integral to evaluate:\newlinedx2x2+8x+4 \int \frac{dx}{\sqrt{-2x^2 + 8x + 4}} \newlineFirst, we need to complete the square for the quadratic expression under the square root to simplify the integral.\newlineThe quadratic expression is 2-2x^22 + 88x + 44. To complete the square, we factor out the coefficient of x^22, which is 2-2:\newline2(x24x2) -2(x^2 - 4x - 2) \newlineNow, we find the number to complete the square, which is (42)2=4\left(\frac{4}{2}\right)^2 = 4. We add and subtract this number inside the parentheses:\newline2(x24x+442) -2(x^2 - 4x + 4 - 4 - 2) \newline2((x2)28) -2((x - 2)^2 - 8) \newlineSo the expression under the square root becomes:\newline2((x2)28) \sqrt{-2((x - 2)^2 - 8)}
  2. Complete the Square: Now we can rewrite the integral with the completed square:\newlinedx2((x2)28) \int \frac{dx}{\sqrt{-2((x - 2)^2 - 8)}} \newlineTo simplify the integral further, we can factor out the 2-2 under the square root:\newlinedx28(x2)2 \int \frac{dx}{\sqrt{2} \sqrt{8 - (x - 2)^2}}
  3. Rewrite Integral: Next, we make a trigonometric substitution. We let x2=22sin(θ) x - 2 = 2\sqrt{2} \sin(\theta) , so that dx=22cos(θ)dθ dx = 2\sqrt{2} \cos(\theta) d\theta and 8(x2)2=8(22sin(θ))2 8 - (x - 2)^2 = 8 - (2\sqrt{2} \sin(\theta))^2 .\newlineSubstituting these into the integral, we get:\newline22cos(θ)dθ28(22sin(θ))2 \int \frac{2\sqrt{2} \cos(\theta) d\theta}{\sqrt{2} \sqrt{8 - (2\sqrt{2} \sin(\theta))^2}} \newline22cos(θ)dθ288sin2(θ) \int \frac{2\sqrt{2} \cos(\theta) d\theta}{\sqrt{2} \sqrt{8 - 8\sin^2(\theta)}} \newline22cos(θ)dθ28(1sin2(θ)) \int \frac{2\sqrt{2} \cos(\theta) d\theta}{\sqrt{2} \sqrt{8(1 - \sin^2(\theta))}} \newline22cos(θ)dθ28cos2(θ) \int \frac{2\sqrt{2} \cos(\theta) d\theta}{\sqrt{2} \sqrt{8\cos^2(\theta)}} \newline22cos(θ)dθ2cos(θ) \int \frac{2\sqrt{2} \cos(\theta) d\theta}{2\cos(\theta)} \newlinedθ \int d\theta
  4. Trigonometric Substitution: The integral of dθ d\theta is simply θ \theta . So we have:\newlineθ+C \theta + C \newlineNow we need to express θ \theta back in terms of x x . From our substitution, we have sin(θ)=x222 \sin(\theta) = \frac{x - 2}{2\sqrt{2}} . Therefore, θ=arcsin(x222) \theta = \arcsin\left(\frac{x - 2}{2\sqrt{2}}\right) .\newlineSo the indefinite integral is:\newlinearcsin(x222)+C \arcsin\left(\frac{x - 2}{2\sqrt{2}}\right) + C

More problems from Evaluate definite integrals using the chain rule