Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

6x23x+5dx\int\frac{6x^{2}}{\sqrt{3x+5}}dx

Full solution

Q. 6x23x+5dx\int\frac{6x^{2}}{\sqrt{3x+5}}dx
  1. Identify integral: Identify the integral to be solved.\newlineWe have the integral:\newline6x23x+5dx\int\frac{6x^2}{\sqrt{3x+5}}\,dx\newlineWe need to find a way to simplify this integral to make it easier to solve.
  2. Use substitution: Use substitution to simplify the integral.\newlineLet u=3x+5u = 3x + 5. Then, dudx=3\frac{du}{dx} = 3, or du=3dxdu = 3dx. We need to express x2x^2 and dxdx in terms of uu and dudu.
  3. Solve for x: Solve for x in terms of uu.\newlineSince u=3x+5u = 3x + 5, we have x=u53x = \frac{u - 5}{3}. Now we can find x2x^2 in terms of uu.\newlinex2=(u53)2x^2 = \left(\frac{u - 5}{3}\right)^2
  4. Substitute x2x^2 and dxdx: Substitute x2x^2 and dxdx in the integral.\newlinex2=(u53)2x^2 = \left(\frac{u - 5}{3}\right)^2\newlinedx=du3dx = \frac{du}{3}\newlineNow, substitute these into the integral:\newline6(u53)2u(du3)\int \frac{6\left(\frac{u - 5}{3}\right)^2}{\sqrt{u}} \cdot \left(\frac{du}{3}\right)
  5. Simplify the integral: Simplify the integral. \newline6(u53)2udu3\int\frac{6\left(\frac{u - 5}{3}\right)^2}{\sqrt{u}} \cdot \frac{du}{3}\newline= 6(u210u+25)91udu3\int\frac{6(u^2 - 10u + 25)}{9}\frac{1}{\sqrt{u}} \cdot \frac{du}{3}\newline= 2(u210u+25)91udu\int\frac{2(u^2 - 10u + 25)}{9}\frac{1}{\sqrt{u}} \cdot du\newline= 29u210u+25udu\frac{2}{9}\int\frac{u^2 - 10u + 25}{\sqrt{u}} du
  6. Split into integrals: Split the integral into three separate integrals.\newline(29)(u210u+25)/(u)du(\frac{2}{9})\int(u^2 - 10u + 25)/(\sqrt{u}) \, du\newline= (29)(u32du)10u12du+25u12du)(\frac{2}{9})(\int u^{\frac{3}{2}} \, du) - 10\int u^{\frac{1}{2}} \, du + 25\int u^{-\frac{1}{2}} \, du)
  7. Integrate each term: Integrate each term separately.\newlineu32du=25u52+C1\int u^{\frac{3}{2}} \, du = \frac{2}{5}u^{\frac{5}{2}} + C_1\newlineu12du=23u32+C2\int u^{\frac{1}{2}} \, du = \frac{2}{3}u^{\frac{3}{2}} + C_2\newlineu12du=2u12+C3\int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} + C_3
  8. Combine integrals: Combine the integrals and multiply by the constant.\newline(29)((25)u5210(23)u32+25(2)u12)+C(\frac{2}{9})((\frac{2}{5})u^{\frac{5}{2}} - 10(\frac{2}{3})u^{\frac{3}{2}} + 25(2)u^{\frac{1}{2}}) + C\newline= (29)((45)u52(203)u32+50u12)+C(\frac{2}{9})((\frac{4}{5})u^{\frac{5}{2}} - (\frac{20}{3})u^{\frac{3}{2}} + 50u^{\frac{1}{2}}) + C\newline= (845)u52(4027)u32+(1009)u12+C(\frac{8}{45})u^{\frac{5}{2}} - (\frac{40}{27})u^{\frac{3}{2}} + (\frac{100}{9})u^{\frac{1}{2}} + C
  9. Substitute back for u: Substitute back for u to get the integral in terms of x.\newlineu=3x+5u = 3x + 5\newline845(3x+5)524027(3x+5)32+1009(3x+5)12+C\frac{8}{45}(3x + 5)^{\frac{5}{2}} - \frac{40}{27}(3x + 5)^{\frac{3}{2}} + \frac{100}{9}(3x + 5)^{\frac{1}{2}} + C

More problems from Evaluate definite integrals using the chain rule