Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(4x^(2)-6)(5x^(2)+3)dx=_____

(4x26)(5x2+3)dx=_____ \int\left(4 x^{2}-6\right)\left(5 x^{2}+3\right) d x=\_\_\_\_\_

Full solution

Q. (4x26)(5x2+3)dx=_____ \int\left(4 x^{2}-6\right)\left(5 x^{2}+3\right) d x=\_\_\_\_\_
  1. Expand and Simplify: We are given the integral of the product of two polynomials, which we can expand before integrating:\newline(4x26)(5x2+3)dx \int (4x^2 - 6)(5x^2 + 3) \, dx \newlineFirst, we'll expand the product of the polynomials:\newline(4x26)(5x2+3)=20x4+12x230x218 (4x^2 - 6)(5x^2 + 3) = 20x^4 + 12x^2 - 30x^2 - 18 \newlineSimplify the middle terms:\newline20x418x218 20x^4 - 18x^2 - 18 \newlineNow we can integrate term by term.
  2. Integrate First Term: Integrate the first term:\newline20x4dx=205x5=4x5 \int 20x^4 \, dx = \frac{20}{5}x^5 = 4x^5
  3. Integrate Second Term: Integrate the second term:\newline18x2dx=183x3=6x3 \int -18x^2 \, dx = \frac{-18}{3}x^3 = -6x^3
  4. Integrate Constant Term: Integrate the constant term:\newline18dx=18x \int -18 \, dx = -18x
  5. Combine Integrated Terms: Combine the integrated terms to get the indefinite integral:\newline(4x26)(5x2+3)dx=4x56x318x+C \int (4x^2 - 6)(5x^2 + 3) \, dx = 4x^5 - 6x^3 - 18x + C \newlinewhere C C is the constant of integration.

More problems from Evaluate definite integrals using the power rule