Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int_(4)^(1)sin^(2)(2x)dx

Evaluate the integral: 41sin2(2x)dx \int_{4}^{1} \sin ^{2}(2 x) d x

Full solution

Q. Evaluate the integral: 41sin2(2x)dx \int_{4}^{1} \sin ^{2}(2 x) d x
  1. Apply power-reduction identity: Use the power-reduction identity for sine to simplify the integral.\newlineThe power-reduction identity for sin2(θ)\sin^2(\theta) is sin2(θ)=1cos(2θ)2\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}.\newlineSo, sin2(2x)=1cos(4x)2\sin^2(2x) = \frac{1 - \cos(4x)}{2}.
  2. Rewrite integral: Rewrite the integral using the power-reduction identity.\newline41sin2(2x)dx=41(1212cos(4x))dx\int_{4}^{1}\sin^{2}(2x)\,dx = \int_{4}^{1}\left(\frac{1}{2} - \frac{1}{2}\cos(4x)\right)dx
  3. Split into two integrals: Split the integral into two separate integrals. \int_{\(4\)}^{\(1\)}\left(\frac{\(1\)}{\(2\)} - \frac{\(1\)}{\(2\)}\cos(\(4x)\right)dx = \frac{11}{22} \int_{44}^{11}dx - \frac{11}{22} \int_{44}^{11}\cos(44x)dx
  4. Evaluate first integral: Evaluate the first integral.\newlineThe integral of 11 with respect to xx is xx. So, 1241dx=12[x]41=12(14)=32.\frac{1}{2} \int_{4}^{1}dx = \frac{1}{2} \left[ x \right]_{4}^{1} = \frac{1}{2} \left( 1 - 4 \right) = -\frac{3}{2}.
  5. Evaluate second integral: Evaluate the second integral.\newlineThe integral of cos(4x)\cos(4x) with respect to xx is 14sin(4x)\frac{1}{4}\sin(4x). So, 12×41cos(4x)dx=12×[14sin(4x)]41=18×[sin(4x)]41=18×(sin(4)sin(16))-\frac{1}{2} \times \int_{4}^{1}\cos(4x)\,dx = -\frac{1}{2} \times \left[\frac{1}{4}\sin(4x)\right]_{4}^{1} = -\frac{1}{8} \times \left[\sin(4x)\right]_{4}^{1} = -\frac{1}{8} \times (\sin(4) - \sin(16)).
  6. Combine results: Combine the results from Step 44 and Step 55.\newlineThe final result of the integral is 3218×(sin(4)sin(16))-\frac{3}{2} - \frac{1}{8} \times (\sin(4) - \sin(16)).
  7. Correct limits: Notice that the limits of integration are in the wrong order; they should be from the lower limit to the higher limit.\newlineWe need to switch the limits of integration and change the sign of the result.\newlineThe correct integral should be 14sin2(2x)dx\int_{1}^{4}\sin^{2}(2x)\,dx, which means we need to take the negative of the result we found.

More problems from Evaluate definite integrals using the chain rule