Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(3x-5)/((x-2)^(2))dx

3x5(x2)2dx \int \frac{3 x-5}{(x-2)^{2}} d x

Full solution

Q. 3x5(x2)2dx \int \frac{3 x-5}{(x-2)^{2}} d x
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function (3x5)/((x2)2)(3x-5)/((x-2)^{2}) with respect to xx.
  2. Decompose Integrand: Decompose the integrand into partial fractions if possible. However, in this case, the numerator is a linear expression and the denominator is a square of a linear expression, which suggests that we should try a different approach, such as looking for a direct antiderivative or using substitution.
  3. Use Substitution: Use substitution to simplify the integral.\newlineLet u=x2u = x - 2, then du=dxdu = dx. The integral becomes:\newline3(u+2)5u2du\int\frac{3(u+2)-5}{u^2} du\newlineSimplify the integrand:\newline3u+65u2du\int\frac{3u+6-5}{u^2} du\newline3u+1u2du\int\frac{3u+1}{u^2} du
  4. Split Integral: Split the integral into two simpler integrals.\newline(3uu2)du+(1u2)du\int(\frac{3u}{u^2}) du + \int(\frac{1}{u^2}) du\newline3udu1u2du\int\frac{3}{u} du - \int\frac{1}{u^2} du
  5. Integrate Terms: Integrate each term separately.\newlineThe integral of 3/u3/u with respect to uu is 3lnu3\ln|u|, and the integral of 1/u21/u^2 with respect to uu is 1/u-1/u.\newlineSo we have:\newline3lnu1/u+C3\ln|u| - 1/u + C, where CC is the constant of integration.
  6. Substitute Back: Substitute back the original variable xx into the antiderivative.\newlineSince u=x2u = x - 2, we have:\newline3lnx21x2+C3\ln|x-2| - \frac{1}{x-2} + C

More problems from Evaluate definite integrals using the chain rule