Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2x39+x2dx\int\frac{2x-3}{9+x^{2}}\,dx

Full solution

Q. 2x39+x2dx\int\frac{2x-3}{9+x^{2}}\,dx
  1. Identify the form: Identify the form of the integral.\newlineThe integral is of the form (2x3)/(9+x2)dx\int(2x-3)/(9+x^2)\,dx, which suggests a possible substitution for the denominator or a partial fraction decomposition. However, since the denominator is a sum of squares, we can't factor it over the reals, so partial fraction decomposition is not applicable. Instead, we will use substitution.
  2. Use substitution: Use substitution to simplify the integral.\newlineLet u=9+x2u = 9 + x^2. Then, du=2xdxdu = 2x dx. Notice that the numerator, 2x32x-3, is not exactly dudu, but it contains the term 2x2x which is part of dudu. We can split the integral into two parts to handle this.
  3. Split the integral: Split the integral into two parts.\newline\int\frac{\(2\)x\(-3\)}{\(9\)+x^\(2\)}\,dx = \int\frac{\(2\)x}{\(9\)+x^\(2\)}\,dx - \int\frac{\(3\)}{\(9\)+x^\(2\)}\,dx
  4. Integrate first part: Integrate the first part using substitution.\(\newlineFor the first part, 2x9+x2dx\int \frac{2x}{9+x^2}\,dx, we can use the substitution from Step 22.\newlineu=9+x2u = 9 + x^2, du=2xdxdu = 2x\,dx\newline2x9+x2dx=1udu\int \frac{2x}{9+x^2}\,dx = \int \frac{1}{u}\,du\newlineThe integral of 1u\frac{1}{u} with respect to uu is lnu\ln|u|, so we have:\newline1udu=lnu+C1=ln9+x2+C1\int \frac{1}{u}\,du = \ln|u| + C_1 = \ln|9 + x^2| + C_1
  5. Integrate second part: Integrate the second part using a trigonometric substitution.\newlineFor the second part, 39+x2dx\int \frac{3}{9+x^2}\,dx, we can use a trigonometric substitution. Let x=3tan(θ)x = 3\tan(\theta), then dx=3sec2(θ)dθdx = 3\sec^2(\theta)\,d\theta and 9+x29+x^2 becomes 9+9tan2(θ)9+9\tan^2(\theta) which simplifies to 9sec2(θ)9\sec^2(\theta).\newline39+x2dx=39sec2(θ)3sec2(θ)dθ\int \frac{3}{9+x^2}\,dx = \int \frac{3}{9\sec^2(\theta)} \cdot 3\sec^2(\theta)\,d\theta\newlineSimplify the integrand:\newline39sec2(θ)3sec2(θ)dθ=(13)dθ\int \frac{3}{9\sec^2(\theta)} \cdot 3\sec^2(\theta)\,d\theta = \int(\frac{1}{3})\,d\theta\newlineThe integral of a constant is just the constant times the variable, so we have:\newline(13)dθ=(13)θ+C2\int(\frac{1}{3})\,d\theta = (\frac{1}{3})\theta + C_2
  6. Convert back to x: Convert the trigonometric result back to x.\newlineWe need to express θ\theta in terms of xx. Since x=3tan(θ)x = 3\tan(\theta), we have tan(θ)=x3\tan(\theta) = \frac{x}{3}. To find θ\theta, we take the arctan of both sides:\newlineθ=arctan(x3)\theta = \arctan\left(\frac{x}{3}\right)\newlineSo the integral becomes:\newline13θ+C2=13arctan(x3)+C2\frac{1}{3}\theta + C_2 = \frac{1}{3}\arctan\left(\frac{x}{3}\right) + C_2
  7. Combine the results: Combine the results from the two parts.\newlineCombining the results from Step 44 and Step 66, we get the final answer for the integral:\newline2x39+x2dx=ln9+x2+(13)arctan(x3)+C\int\frac{2x-3}{9+x^2}\,dx = \ln|9 + x^2| + \left(\frac{1}{3}\right)\arctan\left(\frac{x}{3}\right) + C\newlinewhere CC is the constant of integration combining C1C_1 and C2C_2.

More problems from Evaluate definite integrals using the chain rule