Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Integrate.
int(20000)/((x+100)^(3))dx

Integrate.\newline20000(x+100)3dx \int \frac{20000}{(x+100)^{3}} d x

Full solution

Q. Integrate.\newline20000(x+100)3dx \int \frac{20000}{(x+100)^{3}} d x
  1. Given integral: We are given the integral to evaluate:\newline20000(x+100)3dx\int \frac{20000}{(x+100)^3} \, dx\newlineFirst, we will use a substitution method to simplify the integral.\newlineLet u=x+100u = x + 100, then du=dxdu = dx.
  2. Substitution method: Now, we rewrite the integral in terms of uu:20000u3du\int \frac{20000}{u^3} \, du
  3. Rewrite in terms of uu: The integral of 20000u3\frac{20000}{u^3} is the same as 2000020000 times the integral of u3u^{-3}. We can use the power rule for integration, which states that undu=un+1n+1\int u^n \, du = \frac{u^{n+1}}{n+1} for n1n \neq -1.
  4. Apply power rule: Applying the power rule, we get: 20000×u3du=20000×(u22)20000 \times \int u^{-3} \, du = 20000 \times \left(\frac{u^{-2}}{-2}\right)
  5. Simplify expression: Simplify the expression:\newline=10000u2= -10000 \cdot u^{-2}
  6. Substitute back for u: Now, we substitute back for u to get the integral in terms of xx:=10000×(x+100)2= -10000 \times (x + 100)^{-2}
  7. Add constant of integration: Finally, we add the constant of integration CC to get the indefinite integral:\newline=10000(x+100)2+C= -\frac{10000}{(x + 100)^2} + C

More problems from Evaluate definite integrals using the chain rule