Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

10x35xx4x2+6dx\int\frac{10x^{3}-5x}{\sqrt{x^{4}-x^{2}+6}}\,dx

Full solution

Q. 10x35xx4x2+6dx\int\frac{10x^{3}-5x}{\sqrt{x^{4}-x^{2}+6}}\,dx
  1. Given Integral: We are given the integral:\newline10x35xx4x2+6dx\int\frac{10x^3 - 5x}{\sqrt{x^4 - x^2 + 6}}dx\newlineTo solve this integral, we will first look for a substitution that simplifies the integrand. A natural choice is to let uu be the expression under the square root in the denominator.\newlineLet u=x4x2+6u = x^4 - x^2 + 6.
  2. Substitution: Now, we differentiate uu with respect to xx to find dudu:dudx=4x32x\frac{du}{dx} = 4x^3 - 2xdu=(4x32x)dxdu = (4x^3 - 2x)dx
  3. Differentiation: We notice that the numerator of the integrand, 10x35x10x^3 - 5x, is not a multiple of dudu. However, we can factor out a 55 from the numerator to see if it helps:\newline5(2x3x)dx5(2x^3 - x)dx\newlineWe can now see that if we multiply dudu by 5/25/2, we get the numerator of the integrand:\newline(5/2)du=5(2x3x)dx(5/2)du = 5(2x^3 - x)dx
  4. Factor Out and Match: Now we can express the integral in terms of uu:(10x35xx4x2+6)dx=(52duu)\int\left(\frac{10x^3 - 5x}{\sqrt{x^4 - x^2 + 6}}\right)dx = \int\left(\frac{5}{2}\frac{du}{\sqrt{u}}\right)
  5. Express in terms of uu: Simplify the integral:\newline(52)duu=(52)1udu\int\left(\frac{5}{2}\right)\frac{du}{\sqrt{u}} = \left(\frac{5}{2}\right) \cdot \int\frac{1}{\sqrt{u}}du
  6. Simplify the Integral: The integral of 1u\frac{1}{\sqrt{u}} with respect to uu is 2u2 \sqrt{u}, so we can integrate:\newline(52)1udu=(52)2u+C(\frac{5}{2}) \int \frac{1}{\sqrt{u}}du = (\frac{5}{2}) \cdot 2 \sqrt{u} + C
  7. Integrate 1u\frac{1}{\sqrt{u}}: Simplify the expression:\newline52×2×u+C=5×u+C\frac{5}{2} \times 2 \times \sqrt{u} + C = 5 \times \sqrt{u} + C
  8. Final Simplification: Now we substitute back the original expression for uu:5×u+C=5×x4x2+6+C5 \times \sqrt{u} + C = 5 \times \sqrt{x^4 - x^2 + 6} + C
  9. Substitute Back: We have found the indefinite integral: \newline(10x35xx4x2+6)dx=5x4x2+6+C\int\left(\frac{10x^3 - 5x}{\sqrt{x^4 - x^2 + 6}}\right)dx = 5 \cdot \sqrt{x^4 - x^2 + 6} + C

More problems from Evaluate definite integrals using the chain rule