Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the indefinite integral:(1+x/2)8dx\int(1+x/2)^{8}\,dx

Full solution

Q. Evaluate the indefinite integral:(1+x/2)8dx\int(1+x/2)^{8}\,dx
  1. Write Integral Format: First, let's write the integral in a proper format: (1+x2)8dx\int (1 + \frac{x}{2})^{8} \, dx.
  2. Use Substitution: Now, let's use substitution. Let u=1+x2u = 1 + \frac{x}{2}. Then, du=(12)dxdu = \left(\frac{1}{2}\right) dx, or dx=2dudx = 2 du.
  3. Substitute uu and dxdx: Substitute uu and dxdx in the integral: u82du\int u^8 \cdot 2 \, du.
  4. Integrate u8u^8: Now, integrate u8u^8 with respect to uu: rac{2 imes u^9}{9} + C.
  5. Substitute back for u: Substitute back for u to get the function in terms of xx: 2(1+x2)99+C\frac{2 \cdot (1 + \frac{x}{2})^9}{9} + C.
  6. Correct Integral: But wait, there's a mistake. The power of the function should be increased by 11, which means it should be (1+x/2)9(1 + x/2)^9, not (1+x/2)8(1 + x/2)^8. So the correct integral is (2(1+x/2)9)/9+C(2 \cdot (1 + x/2)^9)/9 + C.

More problems from Evaluate definite integrals using the chain rule