Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int((1-sqrt(3x))^(2))/(x)dx

((13x)2xdx\int(\frac{(1-\sqrt{3x})^{2}}{x} dx

Full solution

Q. ((13x)2xdx\int(\frac{(1-\sqrt{3x})^{2}}{x} dx
  1. Simplify integrand: Simplify the integrand.\newlineWe have the integral of (13x)2/x(1 - \sqrt{3x})^2 / x. Let's expand the square and simplify the expression before integrating.\newline(13x)2=123x+3x(1 - \sqrt{3x})^2 = 1 - 2\sqrt{3x} + 3x\newlineNow, divide each term by xx:\newline(13x)2/x=1/x23/x3/2+3(1 - \sqrt{3x})^2 / x = 1/x - 2\sqrt{3}/x^{3/2} + 3
  2. Split into three integrals: Split the integral into three separate integrals.\newlineWe can now write the integral as the sum of three separate integrals:\newline\int\left(\frac{(\(1\) - \sqrt{\(3\)x})^\(2\)}{x}\right) dx = \int\left(\frac{\(1\)}{x}\right) dx - \(2\sqrt{33}\int\left(\frac{11}{x^{\frac{33}{22}}}\right) dx + \int 33 dx
  3. Integrate each term: Integrate each term separately.\newlineThe first integral is the natural logarithm:\newline(1x)dx=lnx+C1\int(\frac{1}{x}) dx = \ln|x| + C_1\newlineThe second integral involves a power of x:\newline(1x3/2)dx=x3/2dx=x1/21/2+C2=2x1/2+C2\int(\frac{1}{x^{3/2}}) dx = \int x^{-3/2} dx = \frac{x^{-1/2}}{-1/2} + C_2 = -2x^{-1/2} + C_2\newlineThe third integral is straightforward:\newline3dx=3x+C3\int 3 dx = 3x + C_3
  4. Combine and simplify: Combine the results and simplify.\newlineCombining the results from Step 33, we get:\newline((13x)2x)dx=lnx23(2/x1/2)+3x+C\int\left(\frac{(1 - \sqrt{3x})^2}{x}\right) dx = \ln|x| - 2\sqrt{3}(-2/x^{1/2}) + 3x + C\newlineSimplify the second term:\newline=lnx+43/x+3x+C= \ln|x| + 4\sqrt{3}/\sqrt{x} + 3x + C
  5. Write final answer: Write the final answer.\newlineThe indefinite integral of (13x)2/x(1 - \sqrt{3x})^2 / x with respect to xx is:\newline((13x)2x)dx=lnx+43/x+3x+C\int\left(\frac{(1 - \sqrt{3x})^2}{x}\right) dx = \ln|x| + 4\cdot\sqrt{3}/\sqrt{x} + 3x + C

More problems from Evaluate definite integrals using the chain rule