Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

11+x2×11+x2dx\int \frac{-1}{\sqrt{1+x^{2}}} \times \frac{1}{1+x^{2}} \, dx

Full solution

Q. 11+x2×11+x2dx\int \frac{-1}{\sqrt{1+x^{2}}} \times \frac{1}{1+x^{2}} \, dx
  1. Simplify fractions: Simplify the integrand.\newlineThe integrand is the product of two fractions, which can be combined into a single fraction by multiplying the numerators and denominators.\newline11+x2×11+x2=1(1+x2)(1+x2)\frac{-1}{\sqrt{1+x^2}} \times \frac{1}{1+x^2} = \frac{-1}{(\sqrt{1+x^2})(1+x^2)}
  2. Recognize derivative for substitution: Recognize the derivative of the function inside the square root. Notice that the derivative of arctan(x)\text{arctan}(x) is 11+x2\frac{1}{1+x^2}. This suggests a substitution where u=arctan(x)u = \text{arctan}(x), which means du=11+x2dxdu = \frac{1}{1+x^2} dx.
  3. Perform substitution: Perform the substitution.\newlineLet u=arctan(x)u = \arctan(x), then du=11+x2dxdu = \frac{1}{1+x^2} dx.\newlineWe can rewrite the integral in terms of uu:\newline11+x2×11+x2dx=11+tan2(u)du\int \frac{-1}{\sqrt{1+x^2}} \times \frac{1}{1+x^2} dx = \int \frac{-1}{\sqrt{1+\tan^2(u)}} du\newlineSince 1+tan2(u)=sec2(u)1+\tan^2(u) = \sec^2(u), we have 1+tan2(u)=sec2(u)=sec(u)\sqrt{1+\tan^2(u)} = \sqrt{\sec^2(u)} = |\sec(u)|.
  4. Use trigonometric identity: Simplify the integral using the trigonometric identity.\newlineSince sec(u)\sec(u) is the reciprocal of cos(u)\cos(u), and we know that for arctan(x)\arctan(x), cos(u)\cos(u) is positive (because the range of arctan\arctan is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2})), we can drop the absolute value.\newlineThe integral becomes:\newline(1)/sec(u)du=(cos(u))du\int (-1)/\sec(u) \, du = \int (-\cos(u)) \, du
  5. Integrate with respect: Integrate with respect to uu. The integral of cos(u)-\cos(u) with respect to uu is sin(u)+C-\sin(u) + C, where CC is the constant of integration. So, (cos(u))du=sin(u)+C\int (-\cos(u)) \, du = -\sin(u) + C
  6. Substitute back: Substitute back in terms of xx.\newlineSince u=arctan(x)u = \arctan(x), we need to express sin(u)\sin(u) in terms of xx. Using the trigonometric identity sin2(u)+cos2(u)=1\sin^2(u) + \cos^2(u) = 1 and the fact that cos(u)=11+x2\cos(u) = \frac{1}{\sqrt{1+x^2}}, we can find sin(u)\sin(u).\newlinesin(u)=1cos2(u)=1(11+x2)2\sin(u) = \sqrt{1 - \cos^2(u)} = \sqrt{1 - \left(\frac{1}{1+x^2}\right)^2}
  7. Substitute back: Substitute back in terms of xx.\newlineSince u=arctan(x)u = \arctan(x), we need to express sin(u)\sin(u) in terms of xx. Using the trigonometric identity sin2(u)+cos2(u)=1\sin^2(u) + \cos^2(u) = 1 and the fact that cos(u)=11+x2\cos(u) = \frac{1}{\sqrt{1+x^2}}, we can find sin(u)\sin(u).\newlinesin(u)=1cos2(u)=1(11+x2)2\sin(u) = \sqrt{1 - \cos^2(u)} = \sqrt{1 - \left(\frac{1}{1+x^2}\right)^2}Simplify the expression for sin(u)\sin(u).\newlinesin(u)=1(11+x2)2=11(1+x2)2=(1+x2)211+x2\sin(u) = \sqrt{1 - \left(\frac{1}{1+x^2}\right)^2} = \sqrt{1 - \frac{1}{(1+x^2)^2}} = \sqrt{\frac{(1+x^2)^2 - 1}{1+x^2}}\newlineHowever, this step contains a mistake in the simplification process. The correct simplification should be:\newlineu=arctan(x)u = \arctan(x)00

More problems from Evaluate definite integrals using the chain rule