Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(1)/(e^(-x)-1)dx

1ex1dx \int \frac{1}{e^{-x}-1} d x

Full solution

Q. 1ex1dx \int \frac{1}{e^{-x}-1} d x
  1. Simplify integrand: Step 11: Simplify the integrand.\newlineRewrite the integrand using the property of exponents: ex=1/exe^{-x} = 1/e^x.\newlineSo, 1/(ex1)1/(e^{-x} - 1) becomes 1/(1/ex1)1/(1/e^x - 1).\newlineSimplify further: 1/(1/ex1)=ex/(1ex)1/(1/e^x - 1) = e^x/(1 - e^x).
  2. Substitute and simplify: Step 22: Substitute to simplify the integral.\newlineLet u=1exu = 1 - e^x, then du=exdxdu = -e^x dx.\newlineRearrange for dxdx: dx=duexdx = -\frac{du}{e^x}.\newlineSubstitute into the integral: ex1exdx=duu\int \frac{e^x}{1 - e^x} dx = \int -\frac{du}{u}.
  3. Integrate with new variable: Step 33: Integrate using the new variable.\newlineThe integral duu\int -\frac{du}{u} is lnu+C-\ln|u| + C.
  4. Substitute back to x: Step 44: Substitute back to xx.\newlineSince u=1exu = 1 - e^x, the integral becomes ln1ex+C-\ln|1 - e^x| + C.

More problems from Evaluate definite integrals using the chain rule