Simplify integrand: Step 1: Simplify the integrand.Rewrite the integrand using the property of exponents: e−x=1/ex.So, 1/(e−x−1) becomes 1/(1/ex−1).Simplify further: 1/(1/ex−1)=ex/(1−ex).
Substitute and simplify: Step 2: Substitute to simplify the integral.Let u=1−ex, then du=−exdx.Rearrange for dx: dx=−exdu.Substitute into the integral: ∫1−exexdx=∫−udu.
Integrate with new variable: Step 3: Integrate using the new variable.The integral ∫−udu is −ln∣u∣+C.
Substitute back to x: Step 4: Substitute back to x.Since u=1−ex, the integral becomes −ln∣1−ex∣+C.
More problems from Evaluate definite integrals using the chain rule