Evaluate First Integral: Let's start by evaluating the first integral:∫1/etan(x)1+t2tdtTo solve this integral, we will use the substitution method. Let u=1+t2, then du=2tdt. We need to adjust the differential, so we have 21du=tdt.
Substitution Method: Now, we substitute u and 21du into the integral:∫1/etan(x)1+t2tdt=21∫u(1/e)u(tan(x))u1duWe need to evaluate the new limits of integration by substituting t=1/e and t=tan(x) into u=1+t2.
Calculate New Limits: Calculate the new limits of integration:When t=1/e, u=1+(1/e)2.When t=tan(x), u=1+tan2(x).Note that 1+tan2(x) is equal to sec2(x) by the Pythagorean identity.So the new limits are u(1/e)=1+(1/e)2 and u(tan(x))=sec2(x).
Integrate with Respect to u: Now we can integrate with respect to u:21∫1+(1/e)2sec2(x)u1du=21[ln∣u∣]1+(1/e)2sec2(x)
Evaluate Definite Integral: Evaluate the definite integral:21[ln∣sec2(x)∣−ln∣1+(1/e)2∣]=21ln∣sec2(x)∣−21ln∣1+(1/e)2∣
Evaluate Second Integral: Now let's evaluate the second integral:∫1/ecot(x)t(1+t2)dtFor this integral, we will use the substitution method again. Let v=1+t2, then dv=2tdt. We need to adjust the differential, so we have 21dv=tdt.
Substitution Method: Substitute v and 21dv into the integral:∫1/ecot(x)t(1+t2)dt=21∫v(1/e)v(cot(x))v1dvWe need to evaluate the new limits of integration by substituting t=1/e and t=cot(x) into v=1+t2.
Calculate New Limits: Calculate the new limits of integration for the second integral:When t=1/e, v=1+(1/e)2.When t=cot(x), v=1+cot2(x).Note that 1+cot2(x) is equal to csc2(x) by the Pythagorean identity.So the new limits are v(1/e)=1+(1/e)2 and v(cot(x))=csc2(x).
Integrate with Respect to v: Now we can integrate with respect to v:21∫1+(1/e)2csc2(x)v1dv=21[ln∣v∣]1+(1/e)2csc2(x)
Evaluate Definite Integral: Evaluate the definite integral:21[ln∣csc2(x)∣−ln∣1+(1/e)2∣]=21ln∣csc2(x)∣−21ln∣1+(1/e)2∣
Combine Results: Combine the results from Step 5 and Step 10:21ln∣sec2(x)∣−21ln∣1+(1/e)2∣+21ln∣csc2(x)∣−21ln∣1+(1/e)2∣=21ln∣sec2(x)∣+21ln∣csc2(x)∣−ln∣1+(1/e)2∣
Simplify Final Expression: Simplify the final expression:Since ln∣a∣+ln∣b∣=ln∣ab∣, we can combine the logarithms:21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣=21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣Note that sec2(x)csc2(x)=cos2(x)1sin2(x)1=sin2(x)cos2(x)1=sin2(x)cos2(x)1.
Simplify Final Expression: Simplify the final expression:Since ln∣a∣+ln∣b∣=ln∣ab∣, we can combine the logarithms:21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣=21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣Note that sec2(x)csc2(x)=cos2(x)1sin2(x)1=sin2(x)cos2(x)1=sin2(x)cos2(x)1.Recognize that sin2(x)cos2(x) is the square of sin(x)cos(x), which is 41sin2(2x) by the double-angle formula. Therefore, we have:21ln∣41sin2(2x)1∣−ln∣1+(1/e)2∣=21ln∣4csc2(2x)∣−ln∣1+(1/e)2∣
Simplify Final Expression: Simplify the final expression:Since ln∣a∣+ln∣b∣=ln∣ab∣, we can combine the logarithms:21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣=21ln∣sec2(x)csc2(x)∣−ln∣1+(1/e)2∣Note that sec2(x)csc2(x)=cos2(x)1sin2(x)1=sin2(x)cos2(x)1=sin2(x)cos2(x)1.Recognize that sin2(x)cos2(x) is the square of sin(x)cos(x), which is 41sin2(2x) by the double-angle formula. Therefore, we have:21ln∣41sin2(2x)1∣−ln∣1+(1/e)2∣=21ln∣4csc2(2x)∣−ln∣1+(1/e)2∣The final simplified answer is:21ln∣4csc2(2x)∣−ln∣1+(1/e)2∣
More problems from Evaluate definite integrals using the chain rule