Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1/etanxtdt1+t2+1/ecotxdtt(1+t2)\int_{1/e}^{\tan x}\frac{t\,dt}{1+t^{2}}+\int_{1/e}^{\cot x}\frac{dt}{t(1+t^{2})}

Full solution

Q. 1/etanxtdt1+t2+1/ecotxdtt(1+t2)\int_{1/e}^{\tan x}\frac{t\,dt}{1+t^{2}}+\int_{1/e}^{\cot x}\frac{dt}{t(1+t^{2})}
  1. Evaluate First Integral: Let's start by evaluating the first integral:\newline1/etan(x)t1+t2dt \int_{1/e}^{\tan(x)} \frac{t}{1+t^2} dt \newlineTo solve this integral, we will use the substitution method. Let u=1+t2 u = 1 + t^2 , then du=2tdt du = 2t dt . We need to adjust the differential, so we have 12du=tdt \frac{1}{2} du = t dt .
  2. Substitution Method: Now, we substitute u u and 12du \frac{1}{2} du into the integral:\newline1/etan(x)t1+t2dt=12u(1/e)u(tan(x))1udu \int_{1/e}^{\tan(x)} \frac{t}{1+t^2} dt = \frac{1}{2} \int_{u(1/e)}^{u(\tan(x))} \frac{1}{u} du \newlineWe need to evaluate the new limits of integration by substituting t=1/e t = 1/e and t=tan(x) t = \tan(x) into u=1+t2 u = 1 + t^2 .
  3. Calculate New Limits: Calculate the new limits of integration:\newlineWhen t=1/e t = 1/e , u=1+(1/e)2 u = 1 + (1/e)^2 .\newlineWhen t=tan(x) t = \tan(x) , u=1+tan2(x) u = 1 + \tan^2(x) .\newlineNote that 1+tan2(x) 1 + \tan^2(x) is equal to sec2(x) \sec^2(x) by the Pythagorean identity.\newlineSo the new limits are u(1/e)=1+(1/e)2 u(1/e) = 1 + (1/e)^2 and u(tan(x))=sec2(x) u(\tan(x)) = \sec^2(x) .
  4. Integrate with Respect to u: Now we can integrate with respect to u u :\newline121+(1/e)2sec2(x)1udu=12[lnu]1+(1/e)2sec2(x) \frac{1}{2} \int_{1 + (1/e)^2}^{\sec^2(x)} \frac{1}{u} du = \frac{1}{2} \left[ \ln|u| \right]_{1 + (1/e)^2}^{\sec^2(x)}
  5. Evaluate Definite Integral: Evaluate the definite integral:\newline12[lnsec2(x)ln1+(1/e)2] \frac{1}{2} \left[ \ln|\sec^2(x)| - \ln|1 + (1/e)^2| \right] \newline=12lnsec2(x)12ln1+(1/e)2 = \frac{1}{2} \ln|\sec^2(x)| - \frac{1}{2} \ln|1 + (1/e)^2|
  6. Evaluate Second Integral: Now let's evaluate the second integral:\newline1/ecot(x)dtt(1+t2) \int_{1/e}^{\cot(x)} \frac{dt}{t(1+t^2)} \newlineFor this integral, we will use the substitution method again. Let v=1+t2 v = 1 + t^2 , then dv=2tdt dv = 2t dt . We need to adjust the differential, so we have 12dv=tdt \frac{1}{2} dv = t dt .
  7. Substitution Method: Substitute v v and 12dv \frac{1}{2} dv into the integral:\newline1/ecot(x)dtt(1+t2)=12v(1/e)v(cot(x))1vdv \int_{1/e}^{\cot(x)} \frac{dt}{t(1+t^2)} = \frac{1}{2} \int_{v(1/e)}^{v(\cot(x))} \frac{1}{v} dv \newlineWe need to evaluate the new limits of integration by substituting t=1/e t = 1/e and t=cot(x) t = \cot(x) into v=1+t2 v = 1 + t^2 .
  8. Calculate New Limits: Calculate the new limits of integration for the second integral:\newlineWhen t=1/e t = 1/e , v=1+(1/e)2 v = 1 + (1/e)^2 .\newlineWhen t=cot(x) t = \cot(x) , v=1+cot2(x) v = 1 + \cot^2(x) .\newlineNote that 1+cot2(x) 1 + \cot^2(x) is equal to csc2(x) \csc^2(x) by the Pythagorean identity.\newlineSo the new limits are v(1/e)=1+(1/e)2 v(1/e) = 1 + (1/e)^2 and v(cot(x))=csc2(x) v(\cot(x)) = \csc^2(x) .
  9. Integrate with Respect to v: Now we can integrate with respect to v v :\newline121+(1/e)2csc2(x)1vdv=12[lnv]1+(1/e)2csc2(x) \frac{1}{2} \int_{1 + (1/e)^2}^{\csc^2(x)} \frac{1}{v} dv = \frac{1}{2} \left[ \ln|v| \right]_{1 + (1/e)^2}^{\csc^2(x)}
  10. Evaluate Definite Integral: Evaluate the definite integral:\newline12[lncsc2(x)ln1+(1/e)2] \frac{1}{2} \left[ \ln|\csc^2(x)| - \ln|1 + (1/e)^2| \right] \newline=12lncsc2(x)12ln1+(1/e)2 = \frac{1}{2} \ln|\csc^2(x)| - \frac{1}{2} \ln|1 + (1/e)^2|
  11. Combine Results: Combine the results from Step 55 and Step 1010:\newline12lnsec2(x)12ln1+(1/e)2+12lncsc2(x)12ln1+(1/e)2 \frac{1}{2} \ln|\sec^2(x)| - \frac{1}{2} \ln|1 + (1/e)^2| + \frac{1}{2} \ln|\csc^2(x)| - \frac{1}{2} \ln|1 + (1/e)^2| \newline=12lnsec2(x)+12lncsc2(x)ln1+(1/e)2 = \frac{1}{2} \ln|\sec^2(x)| + \frac{1}{2} \ln|\csc^2(x)| - \ln|1 + (1/e)^2|
  12. Simplify Final Expression: Simplify the final expression:\newlineSince lna+lnb=lnab \ln|a| + \ln|b| = \ln|ab| , we can combine the logarithms:\newline12lnsec2(x)csc2(x)ln1+(1/e)2 \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newline=12lnsec2(x)csc2(x)ln1+(1/e)2 = \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newlineNote that sec2(x)csc2(x)=1cos2(x)1sin2(x)=1sin2(x)cos2(x)=1sin2(x)cos2(x) \sec^2(x)\csc^2(x) = \frac{1}{\cos^2(x)}\frac{1}{\sin^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} .
  13. Simplify Final Expression: Simplify the final expression:\newlineSince lna+lnb=lnab \ln|a| + \ln|b| = \ln|ab| , we can combine the logarithms:\newline12lnsec2(x)csc2(x)ln1+(1/e)2 \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newline=12lnsec2(x)csc2(x)ln1+(1/e)2 = \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newlineNote that sec2(x)csc2(x)=1cos2(x)1sin2(x)=1sin2(x)cos2(x)=1sin2(x)cos2(x) \sec^2(x)\csc^2(x) = \frac{1}{\cos^2(x)}\frac{1}{\sin^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} .Recognize that sin2(x)cos2(x) \sin^2(x)\cos^2(x) is the square of sin(x)cos(x) \sin(x)\cos(x) , which is 14sin2(2x) \frac{1}{4}\sin^2(2x) by the double-angle formula. Therefore, we have:\newline12ln114sin2(2x)ln1+(1/e)2 \frac{1}{2} \ln|\frac{1}{\frac{1}{4}\sin^2(2x)}| - \ln|1 + (1/e)^2| \newline=12ln4csc2(2x)ln1+(1/e)2 = \frac{1}{2} \ln|4\csc^2(2x)| - \ln|1 + (1/e)^2|
  14. Simplify Final Expression: Simplify the final expression:\newlineSince lna+lnb=lnab \ln|a| + \ln|b| = \ln|ab| , we can combine the logarithms:\newline12lnsec2(x)csc2(x)ln1+(1/e)2 \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newline=12lnsec2(x)csc2(x)ln1+(1/e)2 = \frac{1}{2} \ln|\sec^2(x)\csc^2(x)| - \ln|1 + (1/e)^2| \newlineNote that sec2(x)csc2(x)=1cos2(x)1sin2(x)=1sin2(x)cos2(x)=1sin2(x)cos2(x) \sec^2(x)\csc^2(x) = \frac{1}{\cos^2(x)}\frac{1}{\sin^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} = \frac{1}{\sin^2(x)\cos^2(x)} .Recognize that sin2(x)cos2(x) \sin^2(x)\cos^2(x) is the square of sin(x)cos(x) \sin(x)\cos(x) , which is 14sin2(2x) \frac{1}{4}\sin^2(2x) by the double-angle formula. Therefore, we have:\newline12ln114sin2(2x)ln1+(1/e)2 \frac{1}{2} \ln|\frac{1}{\frac{1}{4}\sin^2(2x)}| - \ln|1 + (1/e)^2| \newline=12ln4csc2(2x)ln1+(1/e)2 = \frac{1}{2} \ln|4\csc^2(2x)| - \ln|1 + (1/e)^2| The final simplified answer is:\newline12ln4csc2(2x)ln1+(1/e)2 \frac{1}{2} \ln|4\csc^2(2x)| - \ln|1 + (1/e)^2|

More problems from Evaluate definite integrals using the chain rule