Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the integral of the function f(x)=sin 2x ?

(-1//2)cos x+C
(1/2) 
sin x+C

(-1//2)cos 2x+C
(1/2) 
sin 2x+c

What is the integral of the function  f(x)=sin(2x)\ f(x) = sin(2x)?\newline12cos(x)+C \frac{-1}{2}\cos(x) + C \newline12sin(x)+C \frac{1}{2} \sin(x) + C \newline12cos(2x)+C \frac{-1}{2}\cos(2x) + C \newline12sin(2x)+c \frac{1}{2} \sin(2x) + c

Full solution

Q. What is the integral of the function  f(x)=sin(2x)\ f(x) = sin(2x)?\newline12cos(x)+C \frac{-1}{2}\cos(x) + C \newline12sin(x)+C \frac{1}{2} \sin(x) + C \newline12cos(2x)+C \frac{-1}{2}\cos(2x) + C \newline12sin(2x)+c \frac{1}{2} \sin(2x) + c
  1. Identify Integral: Identify the integral that needs to be solved.\newlineWe need to find the integral of f(x)=sin(2x)f(x) = \sin(2x).
  2. Substitution Method: Use the substitution method to simplify the integral.\newlineLet u=2xu = 2x, which implies that dudx=2\frac{du}{dx} = 2 or du=2dxdu = 2dx. Therefore, dx=du2dx = \frac{du}{2}.
  3. Rewrite in terms of uu: Rewrite the integral in terms of uu. The integral of sin(2x)\sin(2x) with respect to xx becomes (1/2)(1/2) times the integral of sin(u)\sin(u) with respect to uu, because dx=du/2dx = du/2.
  4. Integrate sin(u)\sin(u): Integrate sin(u)\sin(u) with respect to uu. The integral of sin(u)\sin(u) dudu is cos(u)+C-\cos(u) + C, where CC is the constant of integration.
  5. Substitute back: Substitute back the original variable.\newlineSince u=2xu = 2x, we substitute back to get the integral in terms of xx. So, the integral becomes (12)cos(2x)+C(-\frac{1}{2})\cos(2x) + C.

More problems from Evaluate definite integrals using the chain rule