Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8.] Suppose 
int_(2)^(4)f(2x)dx=10. Then 
int_(4)^(8)f(u)du=

Suppose 24f(2x)dx=10 \int_{2}^{4} f(2x) \, dx = 10 . Then 48f(u)du= \int_{4}^{8} f(u) \, du =

Full solution

Q. Suppose 24f(2x)dx=10 \int_{2}^{4} f(2x) \, dx = 10 . Then 48f(u)du= \int_{4}^{8} f(u) \, du =
  1. Given information: We are given that 24f(2x)dx=10\int_{2}^{4}f(2x)\,dx=10. To find 48f(u)du\int_{4}^{8}f(u)\,du, we need to perform a substitution to match the limits of integration.\newlineLet u=2xu = 2x, which implies that du=2dxdu = 2dx or dx=du2dx = \frac{du}{2}.
  2. Perform substitution: Now we need to adjust the limits of integration. When x=2x = 2, u=2×2=4u = 2 \times 2 = 4. When x=4x = 4, u=2×4=8u = 2 \times 4 = 8. So the new limits of integration for uu are from 44 to 88.
  3. Adjust limits: Substitute dxdx with du2\frac{du}{2} in the integral and adjust the limits accordingly.24f(2x)dx=48f(u)(12)du\int_{2}^{4}f(2x)dx = \int_{4}^{8}f(u) \cdot \left(\frac{1}{2}\right)du
  4. Substitute and transform: Since we are given that 24f(2x)dx=10\int_{2}^{4}f(2x)\,dx=10, we can equate this to the transformed integral with the new variable and limits.\newline10=(12)48f(u)du10 = \left(\frac{1}{2}\right) \cdot \int_{4}^{8}f(u)\,du
  5. Equating transformed integral: To find 48f(u)du\int_{4}^{8}f(u)\,du, we multiply both sides of the equation by 22.2×10=48f(u)du2 \times 10 = \int_{4}^{8}f(u)\,du
  6. Multiply by 22: Perform the multiplication to solve for the integral. 20=48f(u)du20 = \int_{4}^{8}f(u)\,du

More problems from Evaluate definite integrals using the power rule