Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the integral of the function f(x)=sin 2x?

(-1//2)cos x+C

(1//2)sin x+C

(-1//2)cos 2x+C

(1//2)sin 2x+C

What is the integral of the function f(x)=sin(2x) f(x) = \sin(2x) ?\newline12cos(x)+C \frac{-1}{2}\cos(x) + C \newline12sin(x)+C \frac{1}{2}\sin(x) + C \newline12cos(2x)+C \frac{-1}{2}\cos(2x) + C \newline12sin(2x)+C \frac{1}{2}\sin(2x) + C

Full solution

Q. What is the integral of the function f(x)=sin(2x) f(x) = \sin(2x) ?\newline12cos(x)+C \frac{-1}{2}\cos(x) + C \newline12sin(x)+C \frac{1}{2}\sin(x) + C \newline12cos(2x)+C \frac{-1}{2}\cos(2x) + C \newline12sin(2x)+C \frac{1}{2}\sin(2x) + C
  1. Identify Integral: Identify the integral that needs to be solved.\newlineWe need to find the integral of f(x)=sin(2x)f(x) = \sin(2x).
  2. Substitution Method: Use the substitution method for integration.\newlineLet u=2xu = 2x, which implies that dudx=2\frac{du}{dx} = 2 or du=2dxdu = 2dx. Therefore, dx=du2dx = \frac{du}{2}.
  3. Rewrite in terms of uu: Rewrite the integral in terms of uu. The integral of sin(2x)dx\sin(2x)\,dx becomes (1/2)sin(u)du(1/2)\int \sin(u)\,du after substituting dxdx with du/2du/2.
  4. Integrate sin(u)\sin(u): Integrate sin(u)\sin(u) with respect to uu. The integral of sin(u)\sin(u) with respect to uu is cos(u)+C-\cos(u) + C.
  5. Substitute back xx: Substitute back the original variable xx into the integral.\newlineSince u=2xu = 2x, the integral becomes (12)cos(2x)+C(-\frac{1}{2})\cos(2x) + C.
  6. Write Final Answer: Write the final answer.\newlineThe integral of the function f(x)=sin(2x)f(x) = \sin(2x) is (12)cos(2x)+C(-\frac{1}{2})\cos(2x) + C.

More problems from Evaluate definite integrals using the chain rule