Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(1)^(e^(2))(x^(3)+1)/(x)dx=

1e2x3+1xdx= \int_{1}^{e^{2}} \frac{x^{3}+1}{x} d x=

Full solution

Q. 1e2x3+1xdx= \int_{1}^{e^{2}} \frac{x^{3}+1}{x} d x=
  1. Simplify the integrand: Simplify the integrand: x3+1x=x2+1x\frac{x^3 + 1}{x} = x^2 + \frac{1}{x}.
  2. Break into simpler integrals: Break the integral into two simpler integrals: x=1x=e2(x2+1x)dx=x=1x=e2x2dx+x=1x=e21xdx\int_{x = 1}^{x = e^2} (x^2 + \frac{1}{x}) \, dx = \int_{x = 1}^{x = e^2} x^2 \, dx + \int_{x = 1}^{x = e^2} \frac{1}{x} \, dx.
  3. Integrate each term: Integrate each term:\newlinex2dx=13x3+C\int x^2 \, dx = \frac{1}{3}x^3 + C,\newline1xdx=lnx+C\int \frac{1}{x} \, dx = \ln|x| + C.
  4. Evaluate integrals: Evaluate each integral from 11 to e2e^2: \newlineFor x2dx\int x^2 \, dx from 11 to e2e^2: (1/3)(e2)3(1/3)(1)3=(1/3)e61/3(1/3)(e^2)^3 - (1/3)(1)^3 = (1/3)e^6 - 1/3, \newlineFor 1xdx\int \frac{1}{x} \, dx from 11 to e2e^2: lne2ln1=20=2\ln|e^2| - \ln|1| = 2 - 0 = 2.
  5. Add evaluated integrals: Add the evaluated integrals: (13e613)+2=(13e6+53).\left(\frac{1}{3}e^6 - \frac{1}{3}\right) + 2 = \left(\frac{1}{3}e^6 + \frac{5}{3}\right).

More problems from Evaluate definite integrals using the power rule