Simplify the integrand: Simplify the integrand: xx3+1=x2+x1.
Break into simpler integrals: Break the integral into two simpler integrals: ∫x=1x=e2(x2+x1)dx=∫x=1x=e2x2dx+∫x=1x=e2x1dx.
Integrate each term: Integrate each term:∫x2dx=31x3+C,∫x1dx=ln∣x∣+C.
Evaluate integrals: Evaluate each integral from 1 to e2: For ∫x2dx from 1 to e2: (1/3)(e2)3−(1/3)(1)3=(1/3)e6−1/3, For ∫x1dx from 1 to e2: ln∣e2∣−ln∣1∣=2−0=2.
Add evaluated integrals: Add the evaluated integrals: (31e6−31)+2=(31e6+35).
More problems from Evaluate definite integrals using the power rule