Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(1)^(4)(4x^(3)-x^(2)+3x+2)dx

14(4x3x2+3x+2)dx \int_{1}^{4}\left(4 x^{3}-x^{2}+3 x+2\right) d x

Full solution

Q. 14(4x3x2+3x+2)dx \int_{1}^{4}\left(4 x^{3}-x^{2}+3 x+2\right) d x
  1. Given Integral: We are given the integral to evaluate: 14(4x3x2+3x+2)dx\int_{1}^{4}(4x^{3}-x^{2}+3x+2)dx The first step is to find the antiderivative (indefinite integral) of the function 4x3x2+3x+24x^3 - x^2 + 3x + 2 with respect to xx. To do this, we will apply the power rule for integration, which states that the integral of xndxx^n dx is 1(n+1)x(n+1)+C\frac{1}{(n+1)}x^{(n+1)} + C, where CC is the constant of integration.
  2. Antiderivative Calculation: The antiderivative of 4x34x^3 is (44)x(3+1)=x4(\frac{4}{4})x^{(3+1)} = x^4. The antiderivative of x2-x^2 is (13)x(2+1)=(13)x3(-\frac{1}{3})x^{(2+1)} = -(\frac{1}{3})x^3. The antiderivative of 3x3x is (32)x(1+1)=(32)x2(\frac{3}{2})x^{(1+1)} = (\frac{3}{2})x^2. The antiderivative of 22 is 2x2x. So, the antiderivative of the function is x4(13)x3+(32)x2+2x+Cx^4 - (\frac{1}{3})x^3 + (\frac{3}{2})x^2 + 2x + C.
  3. Evaluate Antiderivative: Now we need to evaluate the antiderivative from x=1x = 1 to x=4x = 4. This is done by calculating the antiderivative at the upper limit of integration and subtracting the antiderivative at the lower limit of integration.\newlineWe will first calculate the antiderivative at x=4x = 4:\newlineF(4)=44(13)43+(32)42+24F(4) = 4^4 - (\frac{1}{3})4^3 + (\frac{3}{2})4^2 + 2\cdot 4
  4. Calculate at x=4x=4: Plugging in the values, we get:\newlineF(4)=256(13)(64)+(32)(16)+8F(4) = 256 - (\frac{1}{3})(64) + (\frac{3}{2})(16) + 8\newlineF(4)=25621.333...+24+8F(4) = 256 - 21.333... + 24 + 8\newlineF(4)=25621.333...+32F(4) = 256 - 21.333... + 32\newlineF(4)=266.666...F(4) = 266.666...
  5. Calculate at x=1x=1: Next, we calculate the antiderivative at x=1x = 1:
    F(1)=14(13)13+(32)12+21F(1) = 1^4 - (\frac{1}{3})1^3 + (\frac{3}{2})1^2 + 2\cdot 1
    F(1)=1(13)+(32)+2F(1) = 1 - (\frac{1}{3}) + (\frac{3}{2}) + 2
  6. Subtract to Find Integral: Plugging in the values, we get:\newlineF(1)=10.333...+1.5+2F(1) = 1 - 0.333... + 1.5 + 2\newlineF(1)=10.333...+3.5F(1) = 1 - 0.333... + 3.5\newlineF(1)=4.166...F(1) = 4.166...
  7. Final Result: Now we subtract F(1)F(1) from F(4)F(4) to get the value of the definite integral:\newline14(4x3x2+3x+2)dx=F(4)F(1)\int_{1}^{4}(4x^{3}-x^{2}+3x+2)\,dx = F(4) - F(1)\newline14(4x3x2+3x+2)dx=266.6664.166\int_{1}^{4}(4x^{3}-x^{2}+3x+2)\,dx = 266.666\ldots - 4.166\ldots
  8. Final Result: Now we subtract F(1)F(1) from F(4)F(4) to get the value of the definite integral:\newline14(4x3x2+3x+2)dx=F(4)F(1)\int_{1}^{4}(4x^{3}-x^{2}+3x+2)\,dx = F(4) - F(1)\newline14(4x3x2+3x+2)dx=266.6664.166\int_{1}^{4}(4x^{3}-x^{2}+3x+2)\,dx = 266.666\ldots - 4.166\ldotsPerforming the subtraction, we get:\newline14(4x3x2+3x+2)dx=262.5\int_{1}^{4}(4x^{3}-x^{2}+3x+2)\,dx = 262.5\newlineThis is the exact, simplified answer to the definite integral.

More problems from Evaluate definite integrals using the chain rule