Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(1)^(2)(x)/(x+4)dx=1+4ln ((5)/(6))

12xx+4dx=1+4ln56 \int_{1}^{2} \frac{x}{x+4} d x=1+4 \ln \frac{5}{6}

Full solution

Q. 12xx+4dx=1+4ln56 \int_{1}^{2} \frac{x}{x+4} d x=1+4 \ln \frac{5}{6}
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function f(x)=xx+4f(x) = \frac{x}{x+4} within the interval [1,2][1, 2].
  2. Decompose integrand: Decompose the integrand into partial fractions if possible. However, in this case, the degree of the numerator is less than the degree of the denominator, so partial fraction decomposition is not necessary. Instead, we can perform a substitution.
  3. Use substitution: Use substitution to simplify the integral.\newlineLet u=x+4u = x + 4, then du=dxdu = dx, and when x=1x = 1, u=5u = 5, and when x=2x = 2, u=6u = 6.
  4. Rewrite in terms of uu: Rewrite the integral in terms of uu. The integral becomes u=5u=6u4udu\int_{u = 5}^{u = 6} \frac{u-4}{u} \, du.
  5. Split into simpler integrals: Split the integral into two simpler integrals. u4udu=1du41udu\int\frac{u-4}{u}\,du = \int 1\,du - 4\int\frac{1}{u}\,du
  6. Evaluate simpler integrals: Evaluate the two simpler integrals.\newlineThe first integral 1du\int 1 \, du is simply uu, and the second integral 41udu-4\int \frac{1}{u} \, du is 4ln(u)-4\ln(u).
  7. Apply limits of integration: Apply the limits of integration from u=5u = 5 to u=6u = 6. We get (u4ln(u))(u - 4\ln(u)) from 55 to 66, which is (64ln(6))(54ln(5))(6 - 4\ln(6)) - (5 - 4\ln(5)).
  8. Perform subtraction: Perform the subtraction to find the definite integral.\newline(64ln(6))(54ln(5))=654ln(6)+4ln(5)=14ln(65)(6 - 4\ln(6)) - (5 - 4\ln(5)) = 6 - 5 - 4\ln(6) + 4\ln(5) = 1 - 4\ln(\frac{6}{5}).
  9. Simplify expression: Simplify the expression.\newline14ln(65)1 - 4\ln(\frac{6}{5}) can be rewritten as 1+4ln(56)1 + 4\ln(\frac{5}{6}) since ln(ab)=ln(ba)\ln(\frac{a}{b}) = -\ln(\frac{b}{a}).
  10. Check final answer: Check if the final expression matches the given answer.\newlineThe final expression is 1+4ln(56)1 + 4\ln(\frac{5}{6}), which matches the given answer.

More problems from Evaluate definite integrals using the chain rule