Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1222x4x5+1dx\int_{\frac{1}{2}}^{2}\frac{2x^{4}}{x^{5}+1}\,dx

Full solution

Q. 1222x4x5+1dx\int_{\frac{1}{2}}^{2}\frac{2x^{4}}{x^{5}+1}\,dx
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 2x4x5+1\frac{2x^4}{x^5 + 1} from x=12x = \frac{1}{2} to x=2x = 2.
  2. Simplify Integral: Simplify the integral if possible.\newlineIn this case, the integral does not simplify easily, so we proceed with the given integral.
  3. Perform Substitution: Perform a substitution if applicable.\newlineLet u=x5+1u = x^5 + 1, then du=5x4dxdu = 5x^4 dx. We need to adjust the integral to match this substitution. To do this, we multiply and divide the integral by 55 to get the x4x^4 term to match dudu.
  4. Rewrite in terms of uu: Rewrite the integral in terms of uu.\newlineThe integral becomes 25(12)225x4x5+1dx=25u(12)u(2)duu\frac{2}{5} \int_{\left(\frac{1}{2}\right)^2}^{2} \frac{5x^4}{x^5 + 1} \, dx = \frac{2}{5} \int_{u\left(\frac{1}{2}\right)}^{u(2)} \frac{du}{u}.
  5. Update Limits: Update the limits of integration.\newlineWhen x=12x = \frac{1}{2}, u=(12)5+1=132+1=3332u = \left(\frac{1}{2}\right)^5 + 1 = \frac{1}{32} + 1 = \frac{33}{32}.\newlineWhen x=2x = 2, u=25+1=32+1=33u = 2^5 + 1 = 32 + 1 = 33.
  6. Evaluate Integral: Evaluate the integral with the new limits.\newlineThe integral is now (25)333233duu(\frac{2}{5}) \int_{\frac{33}{32}}^{33} \frac{du}{u}. The integral of 1u\frac{1}{u} with respect to uu is lnu\ln|u|, so we have (25)[lnu](\frac{2}{5}) [\ln|u|] from u=3332u = \frac{33}{32} to u=33u = 33.
  7. Calculate Definite Integral: Calculate the definite integral. Plug in the limits of integration: (25)(ln33ln3332)=(25)(ln(33)ln(33)+ln(32))=(25)ln(32)(\frac{2}{5}) \cdot (\ln|33| - \ln|\frac{33}{32}|) = (\frac{2}{5}) \cdot (\ln(33) - \ln(33) + \ln(32)) = (\frac{2}{5}) \cdot \ln(32).
  8. Simplify Result: Simplify the result.\newlineThe final answer is (25)ln(32)(\frac{2}{5}) \cdot \ln(32). Since 32=2532 = 2^5, we can use the property of logarithms that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a) to simplify further: (25)ln(25)=(25)5ln(2)=2ln(2)(\frac{2}{5}) \cdot \ln(2^5) = (\frac{2}{5}) \cdot 5 \cdot \ln(2) = 2 \cdot \ln(2).

More problems from Evaluate definite integrals using the chain rule