Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(pi)(sin theta+sin thetatan^(2)theta)/(sec^(2)theta)d theta

0πsinθ+sinθtan2θsec2θdθ \int_{0}^{\pi} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta

Full solution

Q. 0πsinθ+sinθtan2θsec2θdθ \int_{0}^{\pi} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta
  1. Trig Identities Simplification: We are given the integral: \newline0π(sin(θ)+sin(θ)tan2(θ))/(sec2(θ))dθ\int_{0}^{\pi}(\sin(\theta) + \sin(\theta)\tan^{2}(\theta))/(\sec^{2}(\theta)) \, d\theta\newlineFirst, we simplify the integrand using trigonometric identities. We know that sec(θ)=1/cos(θ)\sec(\theta) = 1/\cos(\theta) and tan(θ)=sin(θ)/cos(θ)\tan(\theta) = \sin(\theta)/\cos(\theta). Therefore, tan2(θ)=sin2(θ)/cos2(θ)\tan^{2}(\theta) = \sin^{2}(\theta)/\cos^{2}(\theta) and sec2(θ)=1/cos2(θ)\sec^{2}(\theta) = 1/\cos^{2}(\theta).
  2. Integrand Simplification: We can rewrite the integrand by replacing sec2(θ)\sec^2(\theta) with 1cos2(θ)\frac{1}{\cos^2(\theta)} and tan2(θ)\tan^2(\theta) with sin2(θ)cos2(θ)\frac{\sin^2(\theta)}{\cos^2(\theta)}:sin(θ)+sin(θ)(sin2(θ)cos2(θ))1cos2(θ)\frac{\sin(\theta) + \sin(\theta) \cdot \left(\frac{\sin^2(\theta)}{\cos^2(\theta)}\right)}{\frac{1}{\cos^2(\theta)}}This simplifies to:sin(θ)cos2(θ)+sin3(θ)\sin(\theta)\cos^2(\theta) + \sin^3(\theta)
  3. Splitting Integrals: Now we can split the integral into two separate integrals: 0πsin(θ)cos2(θ)dθ+0πsin3(θ)dθ\int_{0}^{\pi}\sin(\theta)\cos^2(\theta) d\theta + \int_{0}^{\pi}\sin^3(\theta) d\theta
  4. Power-Reducing Formula: Let's first evaluate the integral 0πsin(θ)cos2(θ)dθ\int_{0}^{\pi}\sin(\theta)\cos^2(\theta) d\theta. We can use the power-reducing formula for cos2(θ)\cos^2(\theta), which is cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}.\newlineThe integral becomes:\newline0πsin(θ)(1+cos(2θ)2)dθ\int_{0}^{\pi}\sin(\theta)\left(\frac{1 + \cos(2\theta)}{2}\right) d\theta
  5. Evaluation of First Integral: This integral can be split into two parts:\newline120πsin(θ)dθ+120πsin(θ)cos(2θ)dθ\frac{1}{2} \int_{0}^{\pi}\sin(\theta) d\theta + \frac{1}{2} \int_{0}^{\pi}\sin(\theta)\cos(2\theta) d\theta\newlineThe first integral evaluates to 00 because sin(θ)\sin(\theta) is symmetric about π2\frac{\pi}{2}, and the second integral can be solved using the substitution method or by recognizing it as a product of sine and cosine, which also evaluates to 00 due to the periodicity and symmetry of the functions involved.
  6. Rewriting sin3(θ)\sin^3(\theta): Now let's evaluate the integral 0πsin3(θ)dθ\int_{0}^{\pi}\sin^3(\theta) d\theta. We can use the identity sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta) to rewrite sin3(θ)\sin^3(\theta) as sin(θ)(1cos2(θ))\sin(\theta)(1 - \cos^2(\theta)). The integral becomes: 0πsin(θ)(1cos2(θ))dθ\int_{0}^{\pi}\sin(\theta)(1 - \cos^2(\theta)) d\theta
  7. Evaluation of Second Integral: This integral can be split into two parts: 0πsin(θ)dθ0πsin(θ)cos2(θ)dθ\int_{0}^{\pi}\sin(\theta) d\theta - \int_{0}^{\pi}\sin(\theta)\cos^2(\theta) d\theta As we have already established, both of these integrals evaluate to 00 due to the symmetry of the sine function and the periodicity of the sine and cosine functions.
  8. Final Answer: Since both integrals from the previous steps evaluate to 00, the original integral also evaluates to 00. Therefore, the final answer is 00.

More problems from Evaluate definite integrals using the chain rule