Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(pi//8)2^(cos 4t)sin 4tdt

0π/82cos4tsin4tdt \int_{0}^{\pi / 8} 2^{\cos 4 t} \sin 4 t d t

Full solution

Q. 0π/82cos4tsin4tdt \int_{0}^{\pi / 8} 2^{\cos 4 t} \sin 4 t d t
  1. Integrate with respect to u: Now we need to integrate 142u \frac{1}{4} \cdot 2^u with respect to u u . The integral of 2u 2^u with respect to u u is 2uln2 \frac{2^u}{\ln 2} , so we have:\newline2u(14)du=142udu=142uln2+C \int 2^u \left(\frac{1}{4}\right) du = \frac{1}{4} \int 2^u du = \frac{1}{4} \cdot \frac{2^u}{\ln 2} + C \newlineWe can now evaluate this antiderivative from 00 to 11:\newline142uln201=14ln2(2120) \left. \frac{1}{4} \cdot \frac{2^u}{\ln 2} \right|_{0}^{1} = \frac{1}{4 \ln 2} \cdot (2^1 - 2^0) \newline=14ln2(21) = \frac{1}{4 \ln 2} \cdot (2 - 1) \newline=14ln2 = \frac{1}{4 \ln 2}
  2. Evaluate antiderivative: We have now found the value of the definite integral:\newline0π/82cos4tsin4tdt=14ln2 \int_{0}^{\pi/8} 2^{\cos 4t} \sin 4t \, dt = \frac{1}{4 \ln 2}

More problems from Evaluate definite integrals using the chain rule