Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^((pi)/(4))sin^(3)(x)*cos(x)dx

0π4sin3(x)cos(x)dx \int_{0}^{\frac{\pi}{4}} \sin ^{3}(x) \cdot \cos (x) d x

Full solution

Q. 0π4sin3(x)cos(x)dx \int_{0}^{\frac{\pi}{4}} \sin ^{3}(x) \cdot \cos (x) d x
  1. Given Integral: We are given the integral to evaluate: \newline0π4sin3(x)cos(x)dx\int_{0}^{\frac{\pi}{4}}\sin^{3}(x)\cos(x)\,dx\newlineTo solve this integral, we can use the substitution method. Let's choose u=sin(x)u = \sin(x), which means du=cos(x)dxdu = \cos(x)\,dx.
  2. Substitution Method: Now we differentiate uu with respect to xx to find dudu:dudx=cos(x)\frac{du}{dx} = \cos(x)du=cos(x)dxdu = \cos(x)dx
  3. Differentiate uu: Substitute sin(x)\sin(x) with uu and cos(x)dx\cos(x)dx with dudu in the integral:\newline0(π4)sin3(x)cos(x)dx=sin(0)(sin(π4))u3du\int_{0}^{\left(\frac{\pi}{4}\right)}\sin^{3}(x)\cos(x)dx = \int_{\sin(0)}^{\left(\sin\left(\frac{\pi}{4}\right)\right)}u^3\,du
  4. Substitute uu and dudu: We need to change the limits of integration because we changed the variable of integration from xx to uu. When x=0x = 0, u=sin(0)=0u = \sin(0) = 0. When x=π4x = \frac{\pi}{4}, u=sin(π4)=22u = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}. So the new limits of integration are from 00 to 22\frac{\sqrt{2}}{2}.
  5. Change Limits of Integration: Now we can integrate u3u^3 with respect to uu: \newline0(2/2)u3du=[u44]0(2/2)\int_{0}^{(\sqrt{2}/2)}u^3 du = \left[\frac{u^4}{4}\right]_{0}^{(\sqrt{2}/2)}
  6. Integrate u3u^3: Evaluate the antiderivative at the upper and lower limits:\newlineu440(22)=(22)44044\left.\frac{u^4}{4}\right|_{0}^{\left(\frac{\sqrt{2}}{2}\right)} = \frac{\left(\frac{\sqrt{2}}{2}\right)^4}{4} - \frac{0^4}{4}
  7. Evaluate Antiderivative: Simplify the expression:\newline(\sqrt{2}/2)^4)/4 = (2^2/2^4)/4 = 1/8\(\newline\$(0^4)/4 = 0\(\newline\)\)So the result is \(1/8 - 0 = 1/8\).
  8. Simplify Expression: The final answer is the value of the definite integral: \(\int_{0}^{\frac{\pi}{4}}\sin^{3}(x)\cos(x)dx = \frac{1}{8}\)

More problems from Evaluate definite integrals using the chain rule