Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(4)|x^(2)-9|dx

2727. 04x29dx \int_{0}^{4}\left|x^{2}-9\right| d x

Full solution

Q. 2727. 04x29dx \int_{0}^{4}\left|x^{2}-9\right| d x
  1. Identify sign change points: We need to evaluate the integral of the absolute value function x29|x^2 - 9| from 00 to 44. To do this, we first need to find the points where the function inside the absolute value, x29x^2 - 9, changes sign, as this will affect the integral.
  2. Split integral into intervals: The function x29x^2 - 9 equals zero when x2=9x^2 = 9, which happens at x=3x = -3 and x=3x = 3. Since we are only interested in the interval from 00 to 44, we only need to consider x=3x = 3. This is the point where the function changes from negative to positive.
  3. Evaluate first integral: We split the integral into two parts, from 00 to 33 and from 33 to 44, and remove the absolute value by considering the sign of the function in each interval. For 00 to 33, x29x^2 - 9 is negative, so we take the negative of the function. For 33 to 44, x29x^2 - 9 is positive, so we take the function as it is.
  4. Evaluate second integral: Now we write the integral as the sum of two integrals: 03((x29))dx+34(x29)dx\int_{0}^{3}(-(x^2 - 9))\,dx + \int_{3}^{4}(x^2 - 9)\,dx.
  5. Add results: We evaluate the first integral: 03((x29))dx=03(x29)dx=[13x39x]\int_{0}^{3}(-(x^2 - 9))\,dx = -\int_{0}^{3}(x^2 - 9)\,dx = -[\frac{1}{3}x^3 - 9x] from 00 to 33.
  6. Add results: We evaluate the first integral: 03((x29))dx=03(x29)dx=[13x39x]\int_{0}^{3}(-(x^2 - 9))dx = -\int_{0}^{3}(x^2 - 9)dx = -[\frac{1}{3}x^3 - 9x] from 00 to 33.Plugging in the limits for the first integral, we get [13(3)39(3)(00)]=[13(27)27]=[927]=18-[\frac{1}{3}(3)^3 - 9(3) - (0 - 0)] = -[\frac{1}{3}(27) - 27] = -[9 - 27] = 18.
  7. Add results: We evaluate the first integral: 03((x29))dx=03(x29)dx=[13x39x]\int_{0}^{3}(-(x^2 - 9))dx = -\int_{0}^{3}(x^2 - 9)dx = -[\frac{1}{3}x^3 - 9x] from 00 to 33. Plugging in the limits for the first integral, we get [13(3)39(3)(00)]=[13(27)27]=[927]=18-[\frac{1}{3}(3)^3 - 9(3) - (0 - 0)] = -[\frac{1}{3}(27) - 27] = -[9 - 27] = 18. We evaluate the second integral: 34(x29)dx=[13x39x]\int_{3}^{4}(x^2 - 9)dx = [\frac{1}{3}x^3 - 9x] from 33 to 44.
  8. Add results: We evaluate the first integral: 03((x29))dx=03(x29)dx=[13x39x]\int_{0}^{3}(-(x^2 - 9))dx = -\int_{0}^{3}(x^2 - 9)dx = -[\frac{1}{3}x^3 - 9x] from 00 to 33. Plugging in the limits for the first integral, we get [13(3)39(3)(00)]=[13(27)27]=[927]=18-[\frac{1}{3}(3)^3 - 9(3) - (0 - 0)] = -[\frac{1}{3}(27) - 27] = -[9 - 27] = 18. We evaluate the second integral: 34(x29)dx=[13x39x]\int_{3}^{4}(x^2 - 9)dx = [\frac{1}{3}x^3 - 9x] from 33 to 44. Plugging in the limits for the second integral, we get [(13)(4)39(4)][(13)(3)39(3)]=[(643)36][(273)27]=[(643)(273)][3627]=(373)9[(\frac{1}{3})(4)^3 - 9(4)] - [(\frac{1}{3})(3)^3 - 9(3)] = [(\frac{64}{3}) - 36] - [(\frac{27}{3}) - 27] = [(\frac{64}{3}) - (\frac{27}{3})] - [36 - 27] = (\frac{37}{3}) - 9.
  9. Add results: We evaluate the first integral: 03((x29))dx=03(x29)dx=[13x39x]\int_{0}^{3}(-(x^2 - 9))dx = -\int_{0}^{3}(x^2 - 9)dx = -[\frac{1}{3}x^3 - 9x] from 00 to 33.Plugging in the limits for the first integral, we get [13(3)39(3)(00)]=[13(27)27]=[927]=18-[\frac{1}{3}(3)^3 - 9(3) - (0 - 0)] = -[\frac{1}{3}(27) - 27] = -[9 - 27] = 18.We evaluate the second integral: 34(x29)dx=[13x39x]\int_{3}^{4}(x^2 - 9)dx = [\frac{1}{3}x^3 - 9x] from 33 to 44.Plugging in the limits for the second integral, we get [(13(4)39(4)][13(3)39(3)]=[(643)36][(273)27]=[(643)(273)][3627]=(373)9[(\frac{1}{3}(4)^3 - 9(4)] - [\frac{1}{3}(3)^3 - 9(3)] = [(\frac{64}{3}) - 36] - [(\frac{27}{3}) - 27] = [(\frac{64}{3}) - (\frac{27}{3})] - [36 - 27] = (\frac{37}{3}) - 9.Now we add the results of the two integrals: 18+(373)9=18+12.333...9=21.333...18 + (\frac{37}{3}) - 9 = 18 + 12.333... - 9 = 21.333...

More problems from Evaluate definite integrals using the chain rule